FAIR-HF2 Trial

Intravenous iron in patients with systolic heart failure and iron deficiency to improve morbidity & mortality

Stefan D. Anker, MD PhD on behalf of the FAIR-HF2 Steering Committee,

Trial Committees, Investigators & Coordinators

Dept. of Cardiology / DHZC (CVK) Charité Berlin, Germany

s.anker@cachexia.de

ACC Congress – Chicago, 30th March, 2025

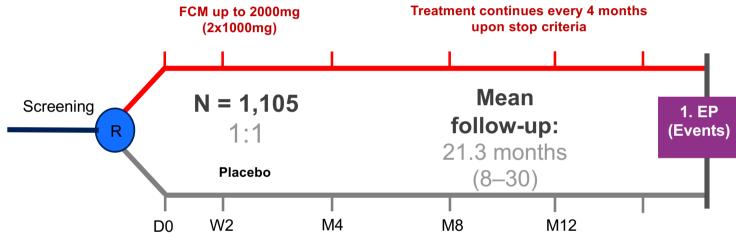
	FCM	Placebo	
	(n=558)	(n=547)	
Age (years)	70.1 ± 11.4	69.7 ± 12.0	
Men (N, %)	359 (64.3%)	378 (69.1%)	
Diabetes (N, %)	248 (44.4%)	255 (46.6%)	
History of atrial fibrillation or flutter (N, %)	282 (50.5%)	290 (53.0%)	
Body Mass Index (kg/m²)	28.1 ± 5.7	28.2 ± 5.5	
Ischaemic cause of cardiomyopathy (N, %)	428 (76.7%)	430 (78.6%)	
NYHA Class II (N, %)	369 (66.1%)	359 (65.6%)	
NYHA Class III (N, %)	186 (33.3%)	184 (33.6%)	
NT-proBNP (pg/mL)	$4,345 \pm 6,990$	4,060 ± 6,018	
Six Minute Walk Test Distance (m)	315 ± 120	313 ± 116	
Estimated Glomerular Filtration Rate	60 ± 23	60 ± 23	
Heart failure therapy			
ACEI (N, %)	240 (43.0%)	215 (39.3%)	
ARB (N, %)	100 (17.9%)	90 (16.5%)	
ARNI (Sacubitril/Valsartan) (N, %)	200 (35.8%)	219 (40.0%)	
Beta blocker (N, %)	504 (90.3%)	512 (93.6%)	
MRA (N, %)	386 (69.2%)	393 (71.9%)	
SGLT2 inhibitor (N, %)	130 (23.3%)	131 (24.0%)	
Diuretics (N, %)	461 (82.6%)	445 (81.4%)	
Laboratory measurements, mean (SD)			
Haemoglobin [g/dL]	12.5 ± 1.1	12.4 ± 1.1	
Ferritin [µg/L]	72 ± 52	74 ± 58	
Transferrin saturation [%]	18.6 ± 9.3	17.9 ± 9.0	

Patient Recruitment

- Symptomatic CHF with LVEF ≤45% &Hgb 9.5–14.0 g/dL
- Iron deficiency: serum ferritin <100 μg/L or ferritin 100-299 ng/mL with TSAT <20%
- HF hospitalization in past 12mo OR stable ambulatory & BNP >100 pg/mL or NT-proBNP >300 pg/mL

Anker SD et al. EJHF 2025 (FAIR-HF2 Baseline Data.)

FAIR-HF2 – Design


Design: Multi-centre, randomised (1:1), double-blinded, placebo-controlled

Iron dosing: Correction dose (up to 2,000 mg FCM)

Maintenance dose (500 mg every 4 months)

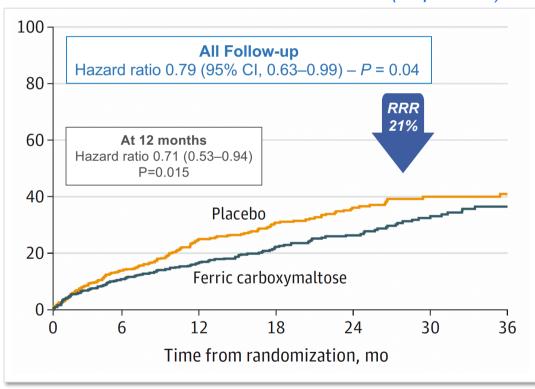
FPFV: March 2017 LPFV: November 2023 LPLV: May 2024

DB lock: 23 Dec 2024

Primary endpoints (3)

- CV death & HF hospitalization (time-to-first event): Cox regression
- HHF (rate of recurrent events): LWYY
- CV death & HF hospitalization (time-to-first event) in subgroup of patients with TSAT <20): Cox regression

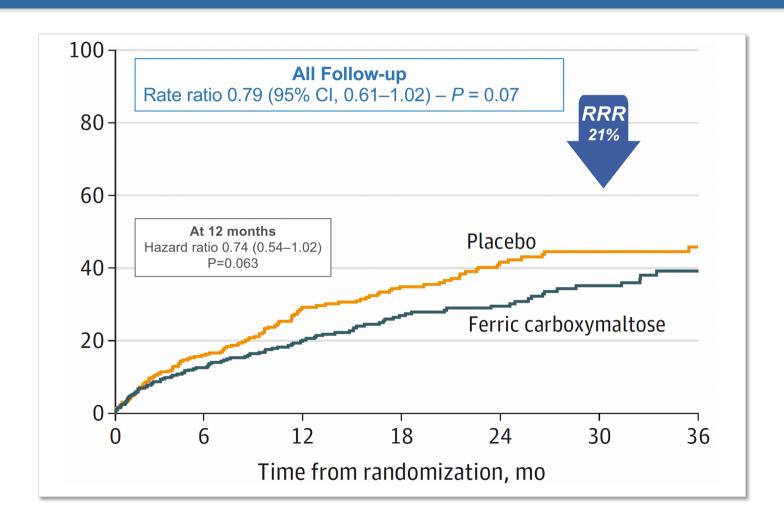
Alpha = 0.05
significance level controlled
across all primary EPs
using Hochberg procedure


Secondary endpoints (4)

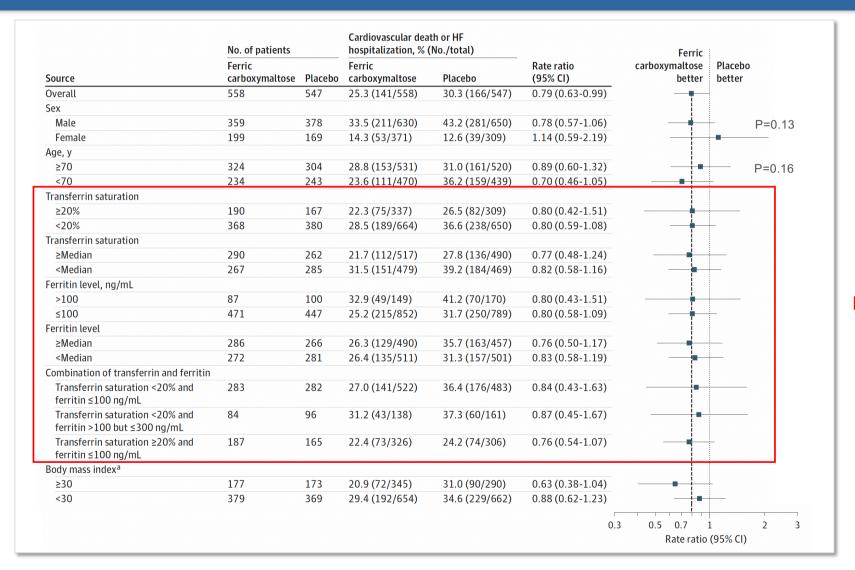
Change in NYHA functional class, EQ-5D, PGA, 6MWT (baseline to 12 months) – Hochberg


Anker SD et al. FAIR-HF2 Design. EJHF 2025

Primary Endpoint 1: CV death or HHF (time-to-first event) Primary Endpoint 2: Recurrent HHF

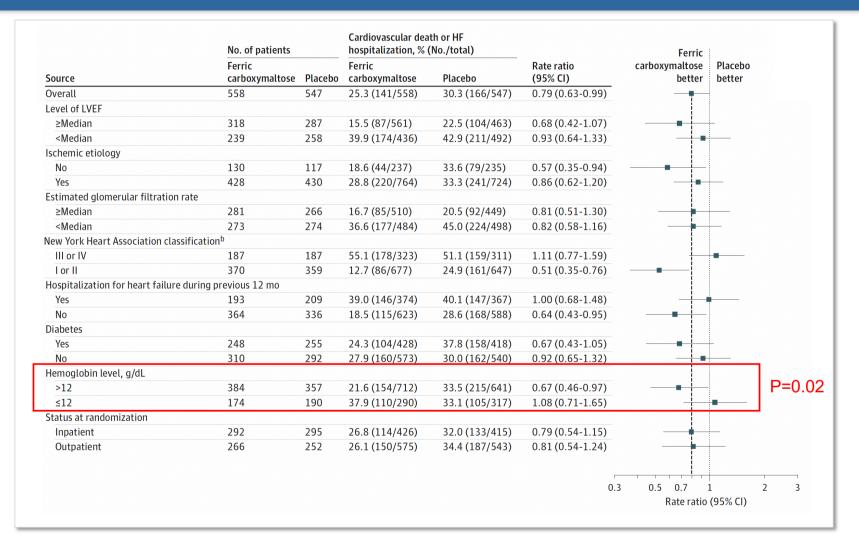

CV death or HHF – time-to-first event (all patients)

Total (first & recurrent) HF hospitalisations



Primary Endpoint 3 – CV death or HHF (time-to-first event) in the subgroup of patients with TSAT <20% at baseline

Anker SD et al. JAMA 2025


Key Subgroups (1) for Primary Endpoint 1 (HHF & CVD)

for all hematinics P ≥ 0.44

Anker SD et al. JAMA 2025

Key Subgroups (2) for Primary Endpoint 1 (HHF & CVD)

Secondary & Safety Endpoints

New York Heart Association classification, change from baseline to 12 mo ^a				OR, 0.69 (0.37 to 1.29)	P=0.08
EQ-5D score, change from baseline to 12 mo, mean (SD) ^b	0.02 (0.18)	-0.02 (0.19)	0.04 (0.26)	MD, 0.03 (0.01 to 0.06)	P=0.0088
Distance on 6-min walk test, change from baseline to 12 mo, mean (SD), m	27.2 (91.1)	19.7 (84.7)	7.5 (124)	MD, 10.7 (-1.44 to 22.9)	P=0.08
Patient-reported global assessment of well-being during follow-up until 12 mo				OR, 0.25 (0.17 to 0.37)	P<0.0001
Safety end points within 36 mo, No. of patients	(rate/100 patient-years)				
All-cause mortality	104 (9.0)	111 (10.0)	-7 (-1)	HR, 0.94 (0.72 to 1.24)	P=0.68
Cardiovascular mortality	54 (5.8)	65 (7.5)	-11 (-1.7)	HR, 0.80 (0.55 to 1.14)	P=0.21
Abbreviations: HR, hazard ratio; MD, mean differ atio. Assesses severity of physical limitation in patier		•		ore of 1 indicates perfect health considered worse than death.	; O, death; an

Summary of Key Outcomes

Primary Endpoints

Heart failure hospitalizations or CV death (time-to-first)

21% ↓ in risk

P = 0.038*

*not statistically significant

Rate of recurrent heart failure hospitalizations

20% ↓ in risk

P = 0.119

TSAT<20%: HF hospitalizations or CV death (time-to-first)

21% ↓ in risk

P = 0.070

Secondary Endpoints

EQ5D summary score (at 12 months)

improvement

P = 0.009

Self-reported PGA (at 12 months)

improvement

P < 0.0001

JAMA

Anker SD, Friede T, Butler J, et al

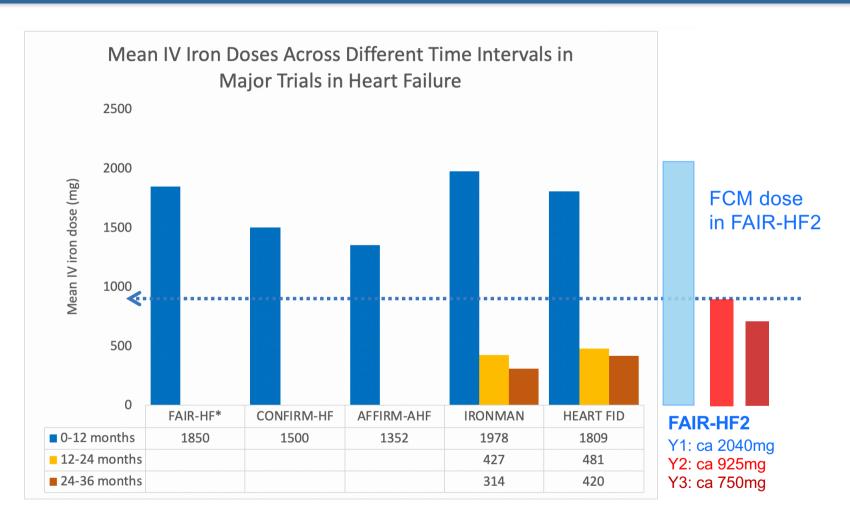
Intravenous Ferric Carboxymaltose in Heart Failure With Iron Deficiency

The FAIR-HF2 DZHK05 Randomized Clinical Trial

Published online March 30, 2025 American College of Cardiology annual meeting

Available at jama.com

Scan to read the article


FAIR-HF2 Conclusions

Results of FAIR-HF2 in terms of the impact on M&M events are highly consistent with those of AFFIRM-AHF & IRONMAN, but do not reach statistical significance within the trial.

FAIR-HF2 suggests that both the classical ID definition (using ferritin & %TSAT) or a simplified one (using only TSAT<20%) are useful.

FAIR-HF2 confirms the benefits of iv-iron therapy on quality of life and patient self-reported health status.

FAIR-HF2 Conclusions

*FAIR-HF: IV iron was dosed over 6 months so 0-12 months actually denotes cumulative dose over 0-6 months

Bayesian Meta-Analysis

2009 to 2025: 6 randomized controlled trials (>200 pats & 24+ weeks duration) with 7,175 patients FAIR-HF, CONFIRM-HF, AFFIRM-AHF, IRONMAN, HEART-FID, FAIR-HF2

Primary Endpoint:

Combined endpoint of recurrent events of HF hospitalizations or CV death
 a) up to 12 months follow-up and b) during the complete follow-up time available

Key Secondary Endpoints:

- Recurrent events of HF hospitalizations during the complete follow-up time available.
- CV mortality during the complete follow-up time available.
- All-cause mortality during the complete follow-up time available.

Tertiary endpoints:

- Infection events and hospitalizations for infections up to 12 months and during the complete follow-up time available (with a focus on safety and as much as it is available)
- Other relevant time intervals such as up to 24 months of follow-up time

The Final Meta-Analysis – Recurrent events HHF & CVD (all FU)

Recurrent Events of HF hospitalizations or CV death Bayesian Random Effects Meta-Analysis

study	effect (RR)	95% CI	
FAIR-HF	0.460	[0.177, 1.195]	
CONFIRM-HF	0.514	[0.277, 0.952]	
AFFIRM-AHF	0.757	[0.600, 0.955]	
IRONMAN	0.820	[0.660, 1.019]	
HEART-FID	0.955	[0.819, 1.114]	
FAIR-HF2	0.797	[0.616, 1.031]	
overall mean effect	0.810	[0.633, 0.973]	
			0 0.5 1
Heterogeneity (tau): 0.12	2 [0.00, 0.39]		0 0.5 1 rate ratio

Recurrent HF
Hospitalisations
and CV death
(all follow-up)
-19%

Sensitivity Analysis: 0.812 (0.675–0.978) (Hartung & Knapp) p=0.035 (tau 0.103)

Anker SD et al. Nature Medicine 2025

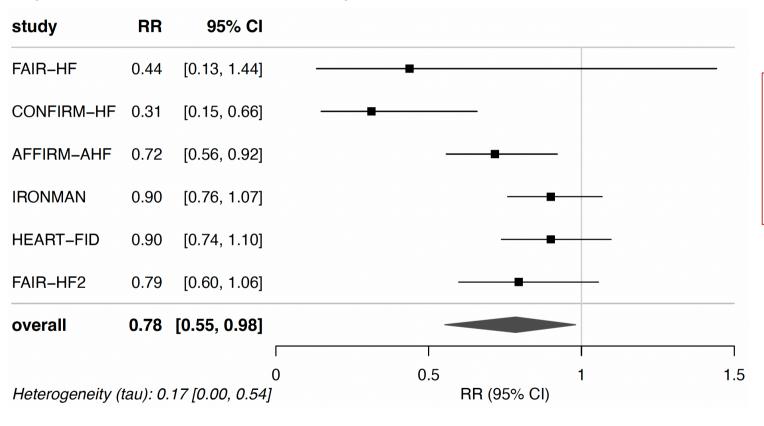
The Final Meta-Analysis – Recurrent events HHF & CVD (12mo FU)

Recurrent Events of HF hospitalizations or CV death Bayesian Random Effects Meta-Analysis

study	effect (RR)	95% CI		
FAIR-HF	0.460	[0.177, 1.195]	-	
CONFIRM-HF	0.514	[0.277, 0.952]		
AFFIRM-AHF	0.757	[0.600, 0.955]		
IRONMAN	0.660	[0.479, 0.909]		
HEART-FID	0.889	[0.737, 1.072]		
FAIR-HF2	0.638	[0.471, 0.863]		
overall mean effect	0.722	[0.553, 0.890]		
Heterogeneity (tau): 0	.15 [0.00, 0.42]		0	0.5 1 rate ratio

Recurrent HF
Hospitalisations
and CV death
(12 months)

–28%


Sensitivity Analysis: 0.731 (0.600–0.891)

(Hartung & Knapp) p=0.010 (tau 0.096)

Anker SD et al. Nature Medicine 2025

The Final Meta-Analysis – Recurrent HHF (all FU)

Recurrent Events of HF hospitalizations (LWYY)
Bayesian Random Effects Meta-Analysis

Recurrent HF hospitalisations (all follow-up)

-22%

at 12 months: -31%

Sensitivity Analysis: 0.74 (0.52–1.06)

(Hartung & Knapp) p=0.081 (tau 0.27)

Anker SD et al. Nature Medicine 2025

The Final Meta-Analysis – CV Mortality (all FU)

CV Mortality – Bayesian Random Effects Meta-Analysis

study	effect (HR)	95% CI	
FAIR-HF	0.491	[0.123, 1.963]	
CONFIRM-HF	0.960	[0.423, 2.177]	
AFFIRM-AHF	0.960	[0.699, 1.318]	
IRONMAN	0.860	[0.671, 1.102]	
HEART-FID	0.860	[0.719, 1.029]	-
FAIR-HF2	0.829	[0.594, 1.158]	
overall mean effect	0.868	[0.727, 1.036]	•
			0 0.5 1 1.5 2
Heterogeneity (tau): 0.07	71 [0.000, 0.284]		hazard ratio

CV Death (all follow-up)
-13%

at 12 months: -18%

Sensitivity Analysis: 0.868 (0.741–1.017)

(Hartung & Knapp) p=0.070 (tau 0.000)

Anker SD et al. Nature Medicine 2025

Meta-analysis iv-iron vs control – Subgroups

8 subgroups for the endpoint "Recurrent events HHF & CVD"

(analysed analogous to Table 2 in Anker et al. (EJHF 2023) and all based on IRONMAN publications)

Subgroup definition	Effects in subgro	Interaction	
	RR (95% CI)	RR (95% CI)	RRR (95% CI)
Sex: female vs. male	0.98 [0.75, 1.26]	0.76 [0.56, 0.95]	1.40 [1.05, 1.86]
Age (years): <69.4 vs. ≥69.4	0.73 [0.49, 0.98]	0.87 [0.70, 1.06]	0.84 [0.59, 1.16]
HF aetiology: ischaemic vs. non-ischaemic	0.74 [0.56, 0.92]	0.90 [0.65, 1.18]	0.84 [0.59, 1.22]
TSAT (%): <20 vs. ≥20	0.77 [0.60, 0.94]	0.96 [0.72, 1.26]	0.85 [0.61, 1.16]
eGFR (mL/min/1.73m²): ≤60 vs. >60	0.81 [0.65, 0.98]	0.84 [0.60, 1.12]	0.96 [0.70, 1.32]
Haemoglobin (g/dL): <11.8 vs. ≥11.8	0.78 [0.58, 1.01]	0.84 [0.62, 1.08]	0.94 [0.62, 1.43]
Ferritin (µg/L): <35 vs. ≥35	0.85 [0.65, 1.16]	0.77 [0.53, 1.01]	1.14 [0.74, 1.95]
NYHA class: I-II vs. III-IV *	0.73 [0.50, 1.02]	0.86 [0.66, 1.09]	0.87 [0.57, 1.29]

^{*} In FAIR-HF there was only 1 event in 82 patients with NYHA class II. Hence, this subgroup analysis of FAIR-HF was omitted from the meta-analysis.

Clinical Implications – The Big Picture

FAIR-HF2, on its own, did not demonstrate significant benefits in terms of reducing M&M events in HF patients with ID. However, the results were highly consistent with those of AFFIRM-AHF & IRONMAN.

FAIR-HF2 confirms the benefits of iv-iron therapy in patients with HFrEF and ID on quality of life and patient self-reported health status.

A meta-analysis using Bayesian statistical approaches, provides evidence of a benefit of intravenous iron to reduce rates of CV death & HF hospitalizations.

The subgroup results for women – where no event reductions for CV death & HF hospitalizations were found – need further exploration.

We need to still understand how to best provide intravenous iron in the long-term.