Gut Microbiota and Associated Metabolites Play a Key Role in the Pathogenesis of the Obesity Phenotype of HFpEF

Yair Rokach, PhD; Suzan Abedat, PhD; Samar Dana, MSc; Dean Nachman, MD; Abed Qadan, MD; Mehseti Ibrahimli, MD; Ronen Beeri, MD; Yael Litvac, PhD; Offer Amir, MD; and <u>Rabea Asleh, MD, PhD.</u>

Cardiovascular Research Center, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Israel.

This work is supported by a grant from the Israel Science Foundation (ISF).

01.09.2024

Disclosures

• I have no disclosures relevant to this talk

HFpEF, Obesity, and Gut Microbiota

- HFpEF accounts for ~50% of HF cases with few proven therapies
- A heterogeneous disease that is largely driven by environmental factors and associated with multiple comorbidities
- Obesity-related HFpEF is the most common phenotype
- Gut microbial dysbiosis has been implicated in inflammation, insulin resistance, and obesity
- However, the involvement of the gut microbiota in the pathogenesis and progression of the obesity-related phenotype of HFpEF is unclear

Borlaug et al. JACC (2023); Desai et al. JACC HF (2023); Lam et al. Eur Heart J (2018); Lee et al. Circulation (2009). Nemet et al. Cell (2020); Quigley et al. Nat Rev Gastroenterol Hepatol (2017); Buffa et al. Nature Micro (2021); Roberts et al. Nature Med (2018); Tang et al, Nat Rev Cardiol (2019); Ronen et al, Asleh. Compr Physiol (2024).

Study Hypothesis

 Gut microbial dysbiosis is important in the progression of the obesity phenotype of HFpEF

Study Design of the Obesity-Related HFpEF in Mice and Humans

Schiattarella GG. et al. Nature (2019)

A Significant Association Between HFpEF and Gut Microbiome Composition

Beta-Diversity for Dissimilarities Between Groups

Alpha Diversity and Bacterial Relative Abundance

Worsening Diastolic Dysfunction in Mice After FMT from **Obese-HFpEF Patients Blooming of Enterobacterial Species**

1. FMT after Extensive Abx Treatment Causative link between gut dysbiosis and HFpEF pathogenesis using FMT **Obese-HFpEF** "two-hit" mode HFpEF-FMT Abx treatment Humanized HEDEF Microbiota Or Abx treatment Control-FMT Humanized Control Microbiota Gut microbiota of FMT in obese-HFpEF mice _∰___6________ ====-__5≣≣ PCoA of bacterial B-diversity (jensen divergence) LEFSe analysis of FMT Obese-HFpEF vs. Obese-Only a-diversity 0.0 4 2 0 2 Avis 1 (38 9%) LDA score (log 10) FMT from Obese-HFpEF FMT from Obese-Control FMT from Obese-Control FMT from Obese-HFpEF EMT from Contro

ESC Congress 2024 London & Online

Body weight change ECHO & ABX EM 60 FMT from control FMT from obese-control (%) FMT from obese-HEpE change 30 Weight (20 0 10 12 14 16 2 6 8 Week

in the Gut of Different FMT Groups

Echocardiographic assessment of diastolic and systolic function among FMT groups

101

1010

10⁹ CFU/gr

feces

Worsening Diastolic Dysfunction in Germ-Free Mice After FMT from Obese-HFpEF Patients

Increased Myocardial Inflammation and Endothelial Dysfunction after FMT from Obese HFpEF Patients to Mice

London & Online

Increased Systemic Inflammation after FMT from HFpEF Versus Control Individuals as Observed in Human Samples

RNA-Seq Data Derived From Hearts of Mice Undergoing FMT from Obese-HFpEF Versus Control Subjects

ESC Congress 2024
London & Online

FMT from obese-HFpEF patients to mice was accompanied by elevated cardiac mRNA levels of hallmark hypertrophic, fibrosis, and inflammatory markers as compared to FMT from obese non-HFpEF subjects.

Metabolomics of Mice Plasma and Heart Tissue after FMT from Obese HFpEF Versus Control Individuals

Does FMT from Healthy Individuals Improve Diastolic Function in HFpEF Humanized Microbiota Mice?

London & Online

Improved Myocardial Inflammation and Endothelial Dysfunction after FMT from Control to Humanized Microbiota Mice

Conclusions

- We demonstrate a causative link between gut microbial dysbiosis and HFpEF progression
- Gut microbiota from obese HFpEF patients induces several proinflammatory and profibrotic signals, along with metabolic profile alterations, that could worsen HFpEF in mice
- Our study suggests that susceptibility to HFpEF may be transmissible in obese individuals and can potentially be modified through gut microbial manipulation as a therapeutic target

Acknowledgments

Research Team:

Cardiovascular Research Center:

Prof. Rabea Asleh, MD, PhD Prof. Offer Amir, MD Prof. Ronen Beeri, MD Dr. Suzan Abedat, PhD Yair Rokach - PhD student Dr. Dean Nachman, MD Dr. Daniel Ronen, MD PhD Dr. Abed-Alhakim Qadan, MD Fathiya Nairoukh - PhD student Samar Daana - Msc student Aseel Basool - MSc Student Niveen Rewished - MSc student Mayaan Edri - MSc student Mera Abd Al-Latif - MSc student Noor Abu Salih - MSc student Emily Peretz – BSc student Kareem Abd Rabu – MSc. Hadeyah Mohsen – MSc student Katy Srojy – MSc student

ESC Congress 2024
London & Online

Collaborations: Dr. Yael Litvak's lab -Faculty of Life Sciences, HU Prof. Eran Elinav lab -Weizmann institute

Prof. Eran Elinav lab -*Weizmann institute* Prof. Yael Houri-Haddad -*Faculty of Dental Medicine* Prof. Rifaat Safadi lab -*The liver institute* Prof. Ronit Abramovich lab -*Wohl Institute*

Funding (gut microbiome and HFpEF Project): The Israel Science Foundation (ISF)

Thank You

Rabea Asleh rasleh@hadassah.org.il

