Efficacy and Safety of Ninerafaxstat, a Novel Cardiac Mitotrope, in Patients with Symptomatic Nonobstructive Hypertrophic Cardiomyopathy

# (Results of IMPROVE-HCM)

Martin S. Maron, MD for the IMPROVE-HCM Study Investigators

Director, HCM Center Lahey Medical Center, Burlington, MA

#### The Unmet Treatment Need in Nonobstructive HCM

#### Nonobstructive HCM (<30 mmHg at rest/exercise)

50% NYHA Class 11-111

#### **Beta-Blocker Calcium Channel Blocker**





## **Diastolic Dysfunction in Nonobstructive HCM**



Limiting Symptoms and Decreased Exercise Capacity

#### Energy Deficiency is a Primary Consequence of HCM Disease Expression







Microvacular Ischemia

#### Exacerbates Primary Energy Deficiency





PULAIP Kallo

For these reasons...

Mitotropes = Drugs that influence myocardial energetics

#### Energy Deficiency is a Primary Consequence of HCM Disease Expression

# **Myocardial Energetics Represent** an Attractive Therapeutic Target

nergy





#### Ninerafaxstat is a Mitotrope that Influences Cardiac Energetics



Approved in some countries for treatment of angina since 1970s & in current ESC treatment guidelines (Class 2a recommendation)

6

#### Ninerafaxstat is a Mitotrope that Influences Cardiac Energetics

# Ninerafaxstat:

# Partial Inhibition of Fatty Acid Oxidation No Drug Monitoring No Hemodynamic Effect



#### Ninerafaxstat: Mechanism of Action **Optimizes Efficiency of ATP Generation to Enhance Cardiac Function**

- Partial inhibition of mitochondrial fatty acid oxidation
- Shift of cardiac metabolism from using fatty acids towards glucose
- Recoupling glycolysis and glucose oxidation
- per molecule of O<sub>2</sub>



Modified from Lopaschuk et al., Physiol. Rev 2010 & Verma et al J Am Coll Cardiol Basic Trans Science 2018; 3:575-587





## **IMPROVE-HCM - Key Inclusion Criteria and Endpoints**

## Study Design and Endpoints

- Randomized and blinded prospective trial for 12 weeks
  - Orally administered ninerafaxstat 200 mg MR BID vs. Placebo
  - Evaluating:
    - Safety and Tolerability
    - CPET Measures (pVO<sub>2</sub> and V<sub>E</sub>/VCO<sub>2</sub>)
    - KCCQ-CSS
    - Echocardiographic Variables
    - NT-proBNP

## Key Inclusion Criteria

- 18-80 years old
- LV wall thickness of ≥15 mm
- LV Outflow Tract Gradient <30 mmHg at rest and with exercise
- Baseline LVEF ≥ 50%
- CPET:
  - pVO2 ≤80% predicted for age & gender
  - RER ≥1.05



## **IMPROVE-HCM** - Clinical Trial Design



#### **IMPROVE-HCM – Baseline Characteristics**

#### Characteristic

Age (Years), Mean (SD)

Male, n (%)

NYHA Functional Class, n (%)

Class II

Class III

Maximal LV Wall Thickness (mm) Mean (SD)

LVEF (%), Mean (SD)

LA Diameter (mmHg), Mean (SD)

pVO2 (mL/kg/min), Mean (SD)

pVO2 % predicted age and gender, % (SD)

VE/VCO<sub>2</sub>, Mean (SD)

NT-proBNP (pg/mL), Mean (SD)

| Placebo<br>(n = 33) | <i>Ninerafaxstat</i><br>(n = 34) |
|---------------------|----------------------------------|
| 56 (13)             | 58 (11)                          |
| 16 (48)             | 14 (41)                          |
|                     |                                  |
| 20 (61)             | 20 (59)                          |
| 12 (36)             | 12 (35)                          |
| 17 (4)              | 17 (3)                           |
| 68 (4)              | 63 (5)                           |
| 36 (5)              | 43 (7)                           |
| 20 (4)              | 18 (4)                           |
| 62 (11)             | 59 (9)                           |
| 33 (5)              | 31 (4)                           |
| 712 (1150)          | 606 (634)                        |
|                     |                                  |

| <br> |
|------|
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

## IMPROVE-HCM – Ninerafaxstat was well tolerated

#### Treatment Emergent Serious Adverse Events

- Placebo: 2 patients (6%)
  - Sepsis; hypoxia (post CPET)
- Ninerafaxstat: 4 patients (11%)
  - COVID pneumonia; CABG; pyelonephritis; abdominal abscess

#### ≥1 Treatment-emergent adverse event

- Placebo: 20 patients (61%)
- Ninerafaxstat: 24 patients (71%)
- Most TEAE were mild to moderate
- pressure or heart rate at Week 12

• Ninerafaxstat was associated with no significant change in LV EF, blood

#### Efficacy of Ninerafaxstat on Heart Failure Symptom Burden by **KCCQ-CSS (ITT Population)**



#### Efficacy of Ninerafaxstat on Heart Failure Symptom Burden by KCCQ-**CSS** (Patients Limited at Baseline)

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

![](_page_13_Picture_4.jpeg)

![](_page_13_Figure_5.jpeg)

#### Efficacy of Ninerafaxstat on Exercise Capacity by $V_F/CO_2$ (ITT Population)

![](_page_14_Figure_1.jpeg)

#### Efficacy of Ninerafaxstat on Exercise Capacity by V<sub>E</sub>/CO<sub>2</sub> (Patients Limited at Baseline)

![](_page_15_Figure_1.jpeg)

![](_page_15_Picture_2.jpeg)

|                                          |           | Ninerafaxstat (N=34)                               |                   | Placebo (N=33)                                  | Treatment Effect                     |                   |
|------------------------------------------|-----------|----------------------------------------------------|-------------------|-------------------------------------------------|--------------------------------------|-------------------|
| Variable                                 | n (%)     | Change from<br>baseline<br><i>Mean</i> ± <i>SD</i> | n (%)             | Change from baseline<br><i>Mean</i> ± <i>SD</i> | LSM<br>difference<br><i>(95% Cl)</i> | ANCOVA<br>P Value |
| pVO <sub>2</sub> (ml/kg/min)             | 29 (85.3) | 0.013 ± 2.03                                       | 30 (90.9)         | 0.02 ± 1.91                                     | 0.061<br>(-0.99, 1.1)                | 0.908             |
| LA Size (mm)                             | 27 (79)   | -0.09<br>± 0.29                                    | 32 (97%)          | 0.10<br>± 0.31                                  | -0.20<br>(-0.35,-0.05)               | 0.010             |
| Average E/e'                             | 27 (79.4) | 0.27<br>±3.4                                       | 31 (93.9)         | 0.93<br>± 3.5                                   | -0.76<br>(-26, 1.0)                  | 0.398             |
| Median NT-proBNP<br>(ng/L)<br>(min, max) | 29 (85.3) |                                                    | 342<br>(54, 6123) |                                                 | 98.03<br>(-110.19,<br>306.24)        | 0.85              |

#### IMPROVE-HCM – pVO<sub>2</sub>, Key Echo Parameters and Biomarkers

![](_page_16_Picture_3.jpeg)

# Conclusions

- In this Phase 2 proof-of-concept study, ninerafaxstat, a novel investigational cardiac mitotrope, was safe and well tolerated in nonobstructive HCM
- Treatment with ninerafaxstat was associated with significant improvement in functional capacity measured by  $V_F/VCO_2$ , an important and prognostic submaximal CPET variable in HCM
- In those nonobstructive HCM patients limited at baseline, ninerafaxstat significantly improved limiting symptoms with favorable change in KCCQ-CCS score
- These results support progression to larger Phase 3 study in symptomatic nonobstructive HCM to investigate if targeted therapy at optimizing cardiac energetics may fulfill an important unmet treatment need in this disease

![](_page_17_Figure_5.jpeg)

![](_page_17_Figure_6.jpeg)