Effect of Alcohol-mediated Renal Denervation on Blood Pressure in the Presence of Antihypertensive Drugs: 3-month Primary Results From the Target BP I Randomized Trial

David E. Kandzari, MD, FACC, MSCAI, on behalf of the TARGET BP I Investigators

Piedmont Heart Institute Atlanta, Georgia david.kandzari@piedmont.org @Kandzari

40024

TARGET BP I Background

 Globally, over 1/3 of adults have hypertension, yet many remain uncontrolled, leading to increased risk of cardiovascular events

A 5-mmHg absolute reduction in office systolic blood pressure leads to a 10% reduction in major CV events¹

- New blood pressure guidelines motivated by increasing awareness of benefit with more intensive blood pressure control, unacceptable levels of hypertension control^{2,3}, and increasing recognition of non-adherence to antihypertensive medications identify the need for alternative treatment options
- Renal denervation (RDN) procedure targets the sympathetic nervous system to lower blood pressure
- Catheter-based perivascular delivery of dehydrated alcohol represents a novel method of neural ablation, achieving a confluent arc of ablation with single, targeted treatment within the renal artery
- To further explore outcomes with alcohol-mediated RDN in the presence of antihypertensive medications, an international sham-controlled RCT was performed

¹ Blood Pressure Lowering Treatment Trialists' Collaboration. Lancet 2021

² Muntner et al. JAMA 2020

³ NHANES 2017–2020. Centers for Disease Control and Prevention. https://millionhearts.hhs.gov/data-reports/hypertension-prevalence.html. Accessed February 10, 2024.

Alcohol-Mediated Renal Denervation

Perivascular Delivery of Alcohol to Adventitial Space Expanded View of Device Infusing Alcohol

Site-specific delivery of alcohol: Local nerve inactivation, no collateral damage

- 1. Micro-volume (0.6 mL) infused directly to the perivascular region
- 2. Extracellular fluid helps spread alcohol circumferentially in the perivascular region
- 3. Alcohol activity range self-limited through dilution by extracellular fluid

Fischell et al. J Am Coll Cardiol Intv 2016

Prior Studies of Alcohol-Mediated RDN

Target BP OFF MED² N=106

Peregrine Post-Market Study³ N=45

ABPM Change from Baseline

1.Fischell et al. *Cardiovasc Revasc Med* 2015 2.Pathak et al. *EuroIntervention* 2023 3.Mahfoud et al. *Circ Cardiovasc Interv* 2021

TARGET BP I Study Design

Chronic AF

*Diuretic therapy required unless documented intolerance

TARGET BP I Patient Flow Chart

TARGET BP I Baseline Patient Characteristics

	RDN (N=148)	Sham (N=153)		
Age	56.7 ± 10.0	55.6 ± 9.1		
Male	113 (76.4%)	111 (72.5%)		
Body-mass index (kg/m ²)	32.6 ± 5.3	32.1 ± 5.3		
Chronic kidney disease (eGFR <60 mL/min per 1.73m ²)	15 (10.1%)	20 (13.1%)		
Type 2 diabetes	30 (20.3%)	40 (26.1%)		
History of arrhythmia	14 (9.5%)	11 (7.2%)		
History of congestive heart failure	7 (4.7%)	8 (5.2%)		
Smoking (current)	14 (9.5%)	20 (13.1%)		
Hyperlipidemia	57 (38.5%)	74 (48.4%)		

ITT population; data represented as N (%) or mean \pm SD *Information on race was not allowed to be collected by law in certain countries

	RDN (N=148)	Sham (N=153)
Race*		
White	45 (30.4%)	42 (27.5%)
Black/African American	23 (15.5%)	30 (19.6%)
Asian	0	2 (1.3%)
Not reported	80 (55.1%)	79 (51.6%)
Number of anti-HTN medications		
2	32 (21.6%)	35 (22.9%)
3	48 (32.4%)	40 (26.1%)
4	41 (27.7%)	43 (28.1%)
≥5	27 (18.2%)	34 (22.2%)
Aldosterone antagonist use	23 (15.5%)	35 (22.9%)

Baseline Blood Pressure and Heart Rate Measures

	RDN (N=148)	Sham (N=153)
Office Measurements		
Office Systolic BP	164 ± 9	164 ± 9
Office Diastolic BP	98 ± 7	100 ± 7
24-hour Ambulatory Measurements		
Mean 24-hour Systolic BP	146 ± 9	146 ± 8
Mean 24-hour Diastolic BP	87 ± 8	88 ± 9
Heart Rate (bpm)	75 ± 12	75 + 14

Data represented as mean ± standard deviation

Procedural Characteristics

	RDN (N=150)	Sham (N=151)
Total procedure time (min)	55.7 ± 27.0 (150)	33.7 ± 24.1 (151)
Total volume contrast (mL)	95.7 ± 47.4 (150)	40.0 ± 22.6 (151)
Total fluoroscopy time (min)	10.8 ± 7.7 (150)	3.1 ± 2.8 (151)
Device success	143 (95.3%)	
Procedure success	139 (92.7%)	
Number arteries treated/patient	2.2	

Data represented as mean \pm standard deviation (N) or N (%)

TARGET BP I Primary Endpoint: 24-hr ASBP at 3 Months

ACC.24

TARGET BP I Ambulatory and Office Systolic BP at 3 Months

Ambulatory and Office Diastolic BP at 3 Months

Prescription Changes and Adherence Results

Adherence to Antihypertensive Medications

Counts are by patient visit; not individual medications or dose Excludes subject visit compliance results that are not available

Safety Outcomes

	30 Days		6 Months			
	RDN (N=149)	Sham (N=150)	P value	RDN (N=145)	Sham (N=146)	<i>P</i> value
Total Major Adverse Events	7 (4.7%)	0	0.007	11 (5.3%)	6 (4.0%)	0.22
All Cause Death	0	0	—	1 (0.7%)	0	0.50
Myocardial Infarction	0	0	_	1 (0.7%)	1 (0.7%)	1.00
Major Vascular Complication	1 (0.7%)	0	0.50	1 (0.7%)	0	0.50
Hypertensive Emergency	1 (0.7%)	0	0.50	2 (1.4%)	2 (1.4%)	1.00
Hypotension*	6 (4.0%)	0	0.02	7 (4.8%)	3 (2.0%)	0.22
eGFR (mL/min/1.73m ²) Change ± SD (N)				-1.2 ± 9.9 (138)	-0.86 ± 9.0 (146)	0.73
Vessel Safety Patency (<60% stenosis)				99.6% (280 vessels)	_	_

*Hypotension requiring intervention or medication change

TARGET BP I Limitations

- High rates of medication nonadherence both at baseline and follow-up
 - No significant differences between groups relative to medication increase/decrease or general adherence
 - Inability of current methods to assess changes in medications within same class or timing of last administration
- Potential influence of home BP assessment uncertain
- Findings limited to 3 months follow-up, and whether progressive declines in BP occur over later follow-up indeterminate
- No procedural assessment regarding completeness of denervation
- Results observed with this therapy and in this specific population may not be generalizable to alternative interventional therapies for hypertension and more varied clinical populations

TARGET BP I Conclusions

- In this sham-controlled, randomized trial inclusive of patients with both uncontrolled and treatment resistant HTN, alcohol-mediated RDN met its primary endpoint, with a modest but significant decrease in 24-hr ambulatory SBP at 3-month follow-up
 - Results consistent across both day/night ABPM and prespecified subgroups
- No significant between group differences were observed relative to office blood pressure assessments
- RDN results observed in context of large BP reductions in sham control cohort
 - Strikingly high rates of partial and complete nonadherence
- Alcohol-mediated RDN associated with favorable procedural performance and intermediate-term safety
- Ongoing, dedicated late-term follow-up will be important to inform the effectiveness as a treatment for uncontrolled HTN

Circulation

CIRCULATION. 2024; [PUBLISHED ONLINE AHEAD OF PRINT]. DOI: 10.1161/CIRCULATIONAHA.124.069291

EFFECT OF ALCOHOL-MEDIATED RENAL DENERVATION ON BLOOD PRESSURE IN THE PRESENCE OF ANTIHYPERTENSIVE MEDICATIONS: PRIMARY RESULTS FROM THE TARGET BP I RANDOMIZED CLINICAL TRIAL

DAVID E. KANDZARI, MD; MICHAEL A. WEBER, MD; ATUL PATHAK, MD, PHD; JAMES P. ZIDAR, MD; MANISH SAXENA, MBBS; SHUKRI W. DAVID, MD; ROLAND E. SCHMIEDER, MD; ADAM J. JANAS, MD, PHD; CHRISTOPHER LANGER, MD; ALEXANDRE PERSU, MD, PHD; FARRELL O, MENDELSOHN, MD; KOEN AMELOOT, MD, PHD; MALCOLM FOSTER III, MD; TIM A. FISCHELL, MD; HELEN PARISE, SCD; FELIX MAHFOUD, MD, MA

CIRCULATION

HTTPS://WWW.AHAJOURNALS.ORG/DOI: 10.1161/CIRCULATIONAHA.124.069291