Randomized Controlled Trial for Pulsed Field Ablation versus Standard of Care Thermal Ablation for Paroxysmal Atrial Fibrillation

Primary Results of the ADVENT Trial

27 August 2023

<u>Vivek Y. Reddy MD</u>,¹ Edward P. Gerstenfeld MD,² Andrea Natale MD,³ William Whang MD,¹ Frank A. Cuoco MD,⁴ Chinmay Patel MD,⁵ Stavros E. Mountantonakis MD,⁶ Douglas N. Gibson MD,⁷ John D. Harding MD,⁸ Christopher R. Ellis MD,⁹ Kenneth A. Ellenbogen MD,¹⁰ David B. DeLurgio MD,¹¹ Jose Osorio MD,¹² Anitha B. Achyutha MTech MSE,¹³ Christopher W. Schneider BSE MEng,¹³ Andrew S. Mugglin PhD,¹⁴ Elizabeth M. Albrecht PhD,¹⁵ Kenneth M. Stein MD,¹⁵ John W. Lehmann MD MPH,¹⁶ and Moussa Mansour MD¹⁷

On behalf of the ADVENT Investigators.

¹Helmsley Electrophysiology Center, Icahn School of Medicine at Mount Sinai, New York, NY; ²University of California San Francisco, San Francisco, CA; ³Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX & Case Western Reserve University, Cleveland, OH; ⁴Trident Medical Center, Charleston, SC; ⁵UPMC Pinnacle, Harrisburg, PA; ⁶Lenox Hill Hospital, Northwell Health, New York City, NY; ⁷Scripps Clinic and Prebys Cardiovascular Institute, San Diego, CA; ⁸Doylestown Hospital, Doylestown, PA; ⁹Vanderbilt University Medical Center, Nashville, TN; ¹⁰Virginia Commonwealth University, Richmond, VA; ¹¹Emory University Hospital, Atlanta, GA; ¹²Grandview Medical Center, Birmingham, AL; ¹³Boston Scientific Corporation, Menlo Park, CA; ¹⁴Paradigm Biostatistics LLC, Anoka, MN; ¹⁵Boston Scientific Corporation St. Paul, MN; ¹⁶Lehmann Consulting, Naples, FL; ¹⁷Massachusetts General Hospital, Boston MA.

Disclosures

<u>E.P.G</u> – Consultant to Farapulse Inc and serves as an unpaid consultant to Boston Scientific Inc. Scientific advisory board to Biosense-Webster and Adagio Medical. Research support from Biosense-Webster, Adagio Medical, Abbott. Lecture honoraria from Medtronic, Boston Scientific Inc and Abbott.

<u>A.N.</u> – Consultant for Abbott, Baylis, Biotronik, Biosense Webster, Boston Scientific and Medtronic.

W.W. – No relevant disclosures.

F.A.C. – Consultant to Boston Scientific and Biosense Webster.

<u>C.P.</u> – Consultant for Boston Scientific.

<u>S.E.M.</u> – Consultant to Medtronic and Boston Scientific Inc. Research support from Medtronic, Biotronik, Abbott and CVRx. Lecture honoraria from Biosense-Webster Medtronic, Boston Scientific Inc, Zoll and Abbott.

D.N.G. – Consultant to Abbott, Baylis, Biotronik, Biosense-Webster, Boston Scientific and Medtronic.

K.A.E. – Consultant and Honorarium from Boston Scientific and Medtronic.

J.D.H. – No relevant disclosures.

<u>C.R.E.</u> – Consultant or advisory board to Abbott Medical, Atricure, Boston Scientific, and Medtronic. Research grants (to Vanderbilt) from Medtronic, Boston scientific, and Boehringer-Ingelheim.

D.B.D. – Consultant and speaker for Boston Scientific.

<u>J.O.</u> – Consultant for Boston Scientific, Biosense-Webster, Medtronic, Volta and Abbott. Medical advisory board for Boston Scientific, Biosense-Webster and Volta.

C.W.S, A.B.A, E.M.A, K.M.S. – Employee and Shareholder of Boston Scientific.

<u>A.S.M.</u> – Consultant to Farapulse Inc and serves as a consultant to Boston Scientific Inc; unrelated to this manuscript, he has also provided statistical consulting and/or Data Safety Monitoring Board services for Atricure, Abbott, Biosense Webster, and Medtronic.

J.W.L – Consultant to and received equity from Farapulse Inc (now divested) and serves as a consultant to Boston Scientific Inc.

<u>M.M.</u> – Consultant for Boston Scientific, Biosense Webster, Abbott, Medtronic, Siemens Novartis, Janssen, Boehringer Ingelheim, Pfizer, Sentreheart/Atricure; and has equity in EPD-Philips (divested), and NewPace Ltd.

Disclosures (cont.)

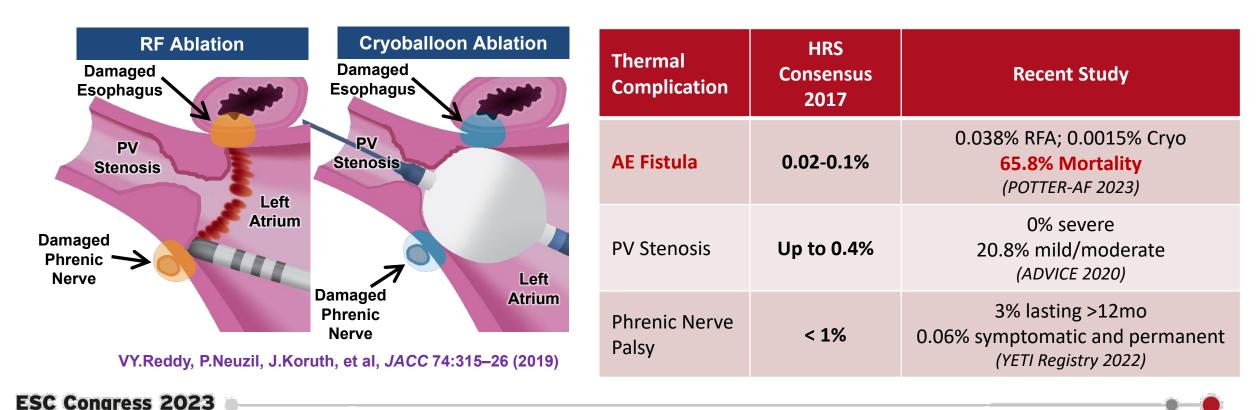
VYR - Farapulse-Boston Scientific Inc: grant support, consultant, equity (now divested); and unrelated to this manuscript, V.Y.R. also serves as a consultant for and has equity in Ablacon, Acutus Medical, Affera-Medtronic, Apama Medical-Boston Scientific, Anumana, APN Health, Aquaheart, Atacor, Autonomix, Axon Therapies, Backbeat, BioSig, CardiaCare, CardioNXT / AFTx, Circa Scientific, CoRISMA, Corvia Medical, Dinova-Hangzhou DiNovA EP Technology, East End Medical, EPD-Philips, EP Frontiers, Epix Therapeutics-Medtronic, EpiEP, Eximo, Field Medical, Focused Therapeutics, HRT, Intershunt, Javelin, Kardium, Keystone Heart, LuxMed, Medlumics, Middlepeak, Neutrace, Nuvera-Biosense Webster, Oracle Health, Restore Medical, Sirona Medical, SoundCath, Valcare; unrelated to this work, has served as a consultant for AtriAN, Biosense-Webster, BioTel Heart, Biotronik, Cairdac, Cardiofocus, Cardionomic, CoreMap, Fire1, Gore & Associates, Impulse Dynamics, Medtronic, Novartis, Philips, Pulse Biosciences; and has equity in Manual Surgical Sciences, Newpace, Nyra Medical, Surecor, and Vizaramed.

The ADVENT trial was funded by Boston Scientific.

The Pulsed Field Ablation system studied in this trial (Farawave) does have CE Mark approval, but **does not have US FDA approval** (and should thus be **considered investigational** in the US).

Principal Investigators, DSMB & CEC

Principal Investigators	Investigational Site	Principal Investigators	Investigational Site	Data Safety Monitoring Board
William Whang	Mt. Sinai Hospital	Michael Mangrum	University of Virginia Medical Center	Jason T. Connor, PhD
David DeLurgio	Emory University Hospital	Douglas Gibson	Scripps Clinic	John D. Day, MD
Jose Osorio	Grandview Medical Center	Christopher Woods	California Pacific Medical Center	George Neal Kay, MD (Chair)
Anil Rajendra	Granuview Medical Center	Christenher Ellie	Vandauhilt Llaivaraity Madical Contar	Eric N. Prystowsky, MD
Benjamin D'Souza	Penn Presbyterian Medical Center	Christopher Ellis	Vanderbilt University Medical Center	
Frank Cuoco	Trident Health System	Educard Constantial		Clinical Events Committee
Marcos Daccarett	St. Luke's Regional Medical Center	Edward Gerstenfeld	University of California, San Francisco	Clinical Events Committee
John Harding	Doylestown Hospital	Stavros Mountantonakis	Northwell Health	Henry Hsia, MD
Robert Pickett	St. Thomas Heart at Baptist Hospital	Wilber Su	Banner University Medical Center – Phoenix	Daniel Lustgarten, MD, PhD (Chair) Peter Zimetbaum, MD
Andrea Natale	Texas Cardiac Arrhythmia Research Foundation	Pasquale Santangeli David Lin	Hospital of the University of Pennsylvania	
Sanjaya Gupta	Saint Luke's Hospital of Kansas City		Catholic Medical Center -	
Moussa Mansour	Massachusetts General Hospital	Jamie Kim	Manchester	
Jeffrey Winterfield	Medical University of South Carolina	Matthew Latacha	Nebraska Methodist Hospital	
Tom McElderry	University of Alabama at	Chinmay Patel	Pinnacle Health Cardiovascular Institute Inc.	
ioni meliacity	Birmingham New York University Langone	Kenneth Ellenbogen	Virginia Commonwealth University	
Larry Chinitz	Medical Center		Health System Providence St. Vincent Medical	
Hugh Calkins	Johns Hopkins Hospital	Blair Halperin	Center	
Zayd Eldadah	MedStar Washington Hospital Center	Andre D'Avila	Beth Israel Deaconess Medical Center	

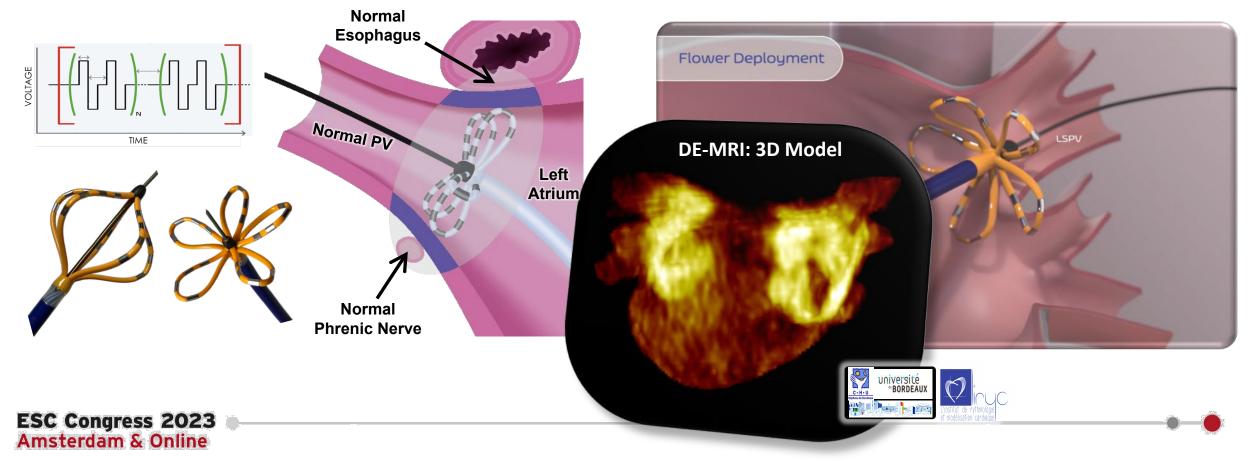

Background – Conventional Thermal Ablation (RF & Cryo)

Thermal Ablation (RF / Cryo) – Highly effective in treating Paroxysmal AF

Thermal energies propagate indiscriminately, spreading into surrounding tissue

- > Physicians take precautions to minimize damage to these adjacent structures
- But serious complications can nonetheless rarely occur

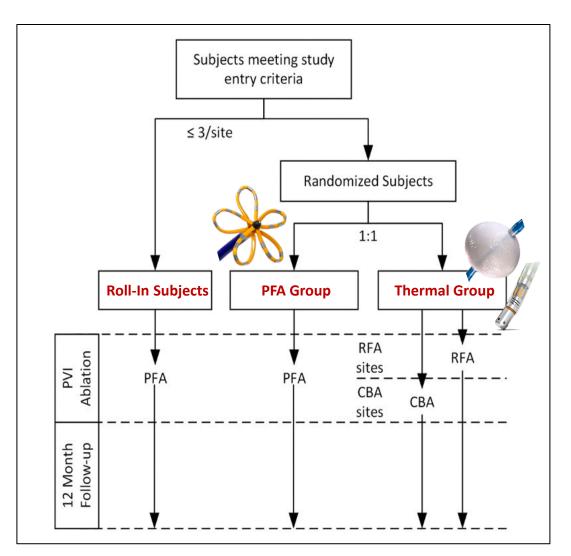
Amsterdam & Online



Background – Pulsed Field Ablation (PFA)

PFA → employs **high energy electrical pulses** for microsecond durations

→ exhibits sufficient ablative specificity – myocardial tissue can be largely preferentially ablated with limited effect on adjacent tissues

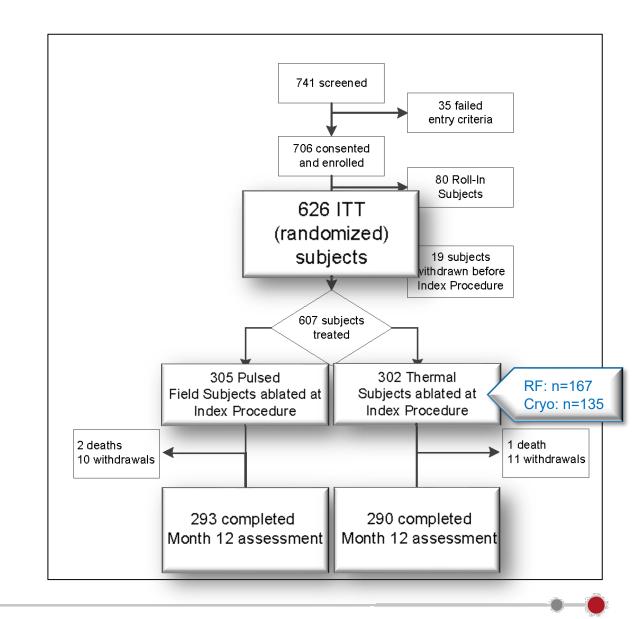

→ Despite no safety precautions being taken (eg, Eso temp monitoring, phrenic pacing)

ADVENT: Study Design

- Multicenter, prospective, single-blind, non-inferiority, randomized controlled trial
- <u>**Objective</u>**: Compare the effectiveness and safety of **PFA** to standard-of-care, **thermal ablation** using either force-sensing RF or cryoballoon ablation</u>
- Indication: Drug-refractory (Class I-IV) paroxysmal AF
 - Randomized 1:1 PFA to thermal
 - Each center was assigned to either RF or Cryo as their control
- <u>Follow-up Duration:</u> 12 months
- Follow-up Efficacy Assessments:

- 72-hr Holter at 6 and 12 months
- Trans-telephonic ECG monitoring: Weekly & for Symptoms

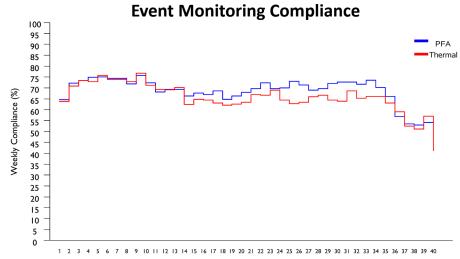
Study Design - Endpoints


Effectiveness	Safety
Primary Endpoint Treatment success required both acute procedural and chronic success which includes: ○ Freedom from documented AF, AFL, or AT ≥30s ○ Freedom from repeat ablation for AF, AFL, or AT at any time ○ Freedom from cardioversion for AF, AFL, or AT ○ Freedom from use of Class I or III AAD after the blanking period or amiodarone at any time	Primary Endpoint Composite of defined device- or procedure-related serious adverse events (SAEs) occurring within 7 days of the primary procedure and SAEs (PV stenosis and atrio-esophageal fistula) out to 12 months
Tested for non-inferiority to thermal ablation	Tested for non-inferiority to thermal ablation
Same as primary but tested for superiority to thermal ablation	Secondary Endpoint Change in aggregate PV cross-sectional area between baseline and 3 months compared between randomization groups Tested for superiority of PFA to thermal ablation

Study Design

- Bayesian statistical methods, with noninformative prior distributions
- Sample size determined adaptively
 - Interim analysis at 350, 450, 550, 650, 750 to assess predictive probability that noninferfority would be demonstrated
 - 95% power to assess for non-inferiority (assumed efficacy of 65% & assumed safety event rate of 8%)
- Both primary endpoints were tested for noninferiority of PFA to thermal ablation
 - Absolute margin for safety: 8%

- Absolute margin for effectiveness: 15%
- All endpoints were analyzed in the modified intention-to-treat population
 - Randomized patients in whom ablative energy was delivered with the assigned catheter

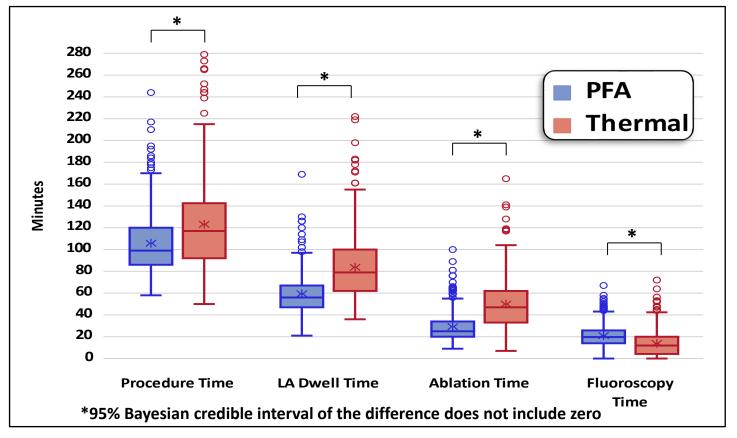


Patient Demographics

	Pulsed Field Group (n=305)	Thermal Group (n=302)
Age, years	62.4 ± 8.7	62.5 ± 8.5
Sex - Female, no. (%)	103 (33.8)	107 (35.4)
Body mass index, kg/m ²	28.3 ± 4.6	29.0 ± 4.8
CHA ₂ DS ₂ -VASc Score, mean	1.7 ± 1.2	1.7 ± 1.2
Years since first PAF diagnosis	3.8 ± 6.2	3.3 ± 4.5
Typical atrial flutter history, no. (%)	83 (27.2)	100 (33.1)
Left atrial diameter, mm	38.8 ± 5.7	39.6 ± 5.8
Concomitant clinical conditions, no (%)		
Coronary artery disease	32 (10.5)	51 (16.9)
CHF: NYHA Class I or II	59 (19.3)	59 (19.5)
Diabetes	33 (10.8)	32 (10.6)
Dyslipidemia	133 (43.6)	141 (46.7)
Hypertension	174 (57.0)	159 (52.6)
Sleep apnea	81 (26.6)	88 (29.1)
Prior stroke / TIA	12 (3.9)	15 (5.0)
AADs at baseline, no. (%)		
Any AAD	301 (98.7)	300 (99.3)
Class I	115 (37.7)	101 (33.4)
Class II	174 (57.0)	201 (66.6)
Class III	70 (23.0)	72 (23.8)
Class IV 2023	79 (25.9)	66 (21.9)

Patient Compliance & Blinding

Rhythm Monitoring Compliance	Pulsed Field Subjects no. / total no. (%)	Thermal Subjects no. / total no. (%)
Clinical follow-up visits	1800/1813 (99.3)	1786/1799 (99.3)
Weekly event monitoring	8,101/11,765 (68.9)	7,655/11,572 (66.2)
12-Lead Electrocardiograms	540/601 (89.9)	526/593 (88.7)
Holter monitoring (72-hour)	508/600 (84.7)	464/593 (78.2)


Weeks Post-Blanking Period

Blinding Assessment		Pre-Discharge no. / total no. (%)	Month 12 no. / total no. (%)
Subjects with B	linding Data		
Pulsed Field Subjects		287/305 (94.1)	290/305 (95.1)
Thermal Sub	jects	283/302 (93.7)	289/302 (95.7)
Subject-Asserted Treatment Status		5	
Pulsed Field	Guess PFA	44/287 (15.3)	96/290 (33.1)
	Guess Thermal	6/287 (2.1)	8/290 (2.8)
	Don't Know	237/287 (82.6)	186/290 (64.1)
Thermal	Guess PFA	31/283 (11.0)	45/289 (15.6)
	Guess Thermal	16/283 (5.7)	44/289 (15.2)
	Don't Know	236/283 (83.4)	200/289 (69.2)

Procedural Characteristics

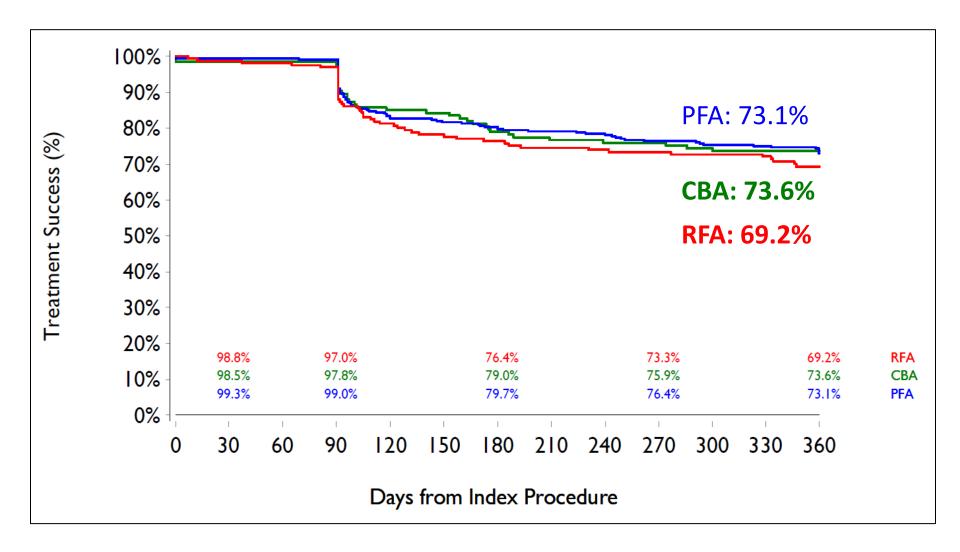
ESC Congress 2023 Amsterdam & Online

- Acute success of PV isolation: PFA 99.6% & Thermal 99.8%
- Procedure time, LA dwell, and ablation time were significantly shorter for PFA
- Fluoroscopy time was longer with PFA (but by only ~7 min)



Definitions:

- <u>Procedure time:</u> venous access to access closure including a 20-minute post-ablation waiting period and CTI, if performed (23% PFA, 28.5% Thermal subjects)
- **LA Dwell time:** total time in minutes that an ablation catheter is in the LA
- <u>Ablation time:</u> elapsed time from first to last ablation
- <u>Rem</u>: Most operators* had never used this PFA catheter (*vs* most had performed thousands of thermal ablation procedures)

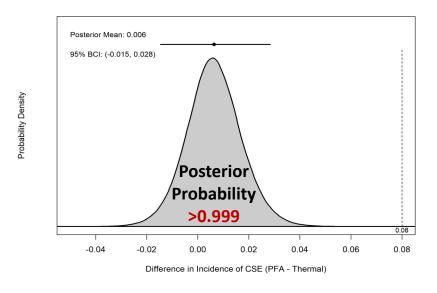

Primary Effectiveness Endpoint

ESC Congress 2023 Amsterdam & Online

Did not meet the criteria for Superiority (of PFA)

1-Year Effectiveness by Ablation Modality

Additional Effectiveness Endpoints


	Pulsed Field Group (n=305)	Thermal Group (n=302)	Difference (95% BCI)
Mode of <u>first</u> failure of the primary efficacy endpoint, no. (%)			
Acute procedural failure	2 (0.8)	2 (0.8)	0 (-1.5, 1.5)
Recurrent atrial arrhythmia (AF / AFL / AT), ≥ 30 seconds	51 (17.2)	48 (16.4)	0.7 (-5.2, 6.7)
Cardioversion after the 3-month blanking period	1 (0.5)	0 (0.2)	0.3 (-0.6, 1.5)
Use of Class I/III AADs after the 3-month blanking period	24 (8.1)	27 (9.2)	-1.1 (-5.6, 3.4)
Amiodarone use at any time	1 (0.5)	7 (2.5)	-2.0 (-4.2, -0.2)
Repeat catheter ablation at any time	1 (0.5)	1 (0.5)	0 (-1.2, 1.2)
Other Prespecified Efficacy Endpoints			
Treatment success allowing re-ablation	204 (73.3)	194 (71.3)	2.0 (-5.2, 9.2)
Treatment success allowing Class I/III AADs	219 (78.5)	208 (76.3)	2.3 (-4.4, 9.0)
Quality of Life – Change from baseline to 1-year			
AFEQT score	30.1 (27.7, 32.5)	27.7 (25.2, 30.3)	2.3 (-1.19, 5.88)
EQ-5D score	0.05 (0.03, 0.06)	0.04 (0.03, 0.06)	0.01 (-0.02, 0.03)
EQ-VAS score	7.9 (6.5, 9.4)	6.8 (5.1, 8.4)	1.2 (-1.03, 3.36)

Primary Safety Endpoint

		Serious Composite Safety Events		
	Pulsed Field Group, N = 305 n (%)	Thermal Group, N = 302 n (%)		
Any Composite Safety Event	6 (2.0) †	4 (1.3)		
Death	1 (0.3)	0		
Myocardial infarction	0	0		
Persistent phrenic nerve palsy	0	0		
Stroke	0	1 (0.3)		
Transient ischemic attack	1 (0.3)	0		
Systemic thromboembolism	0	0		
Cardiac tamponade or perforation	2 (0.7)	0		
Pericarditis	1 (0.3)	0		
Pulmonary edema	1 (0.3)	1 (0.3)		
Vascular access complication	1 (0.3)	2 (0.7)		
Heart block	0	0		
Gastric motility/ pyloric spasm	0	0		
Pulmonary vein stenosis	0	0		
Atrio-esophageal fistula	0	0		

The primary safety endpoint occurred in 6 PFA and 4 thermal subjects with an estimated incidence of 2.1% versus 1.5% (posterior means), meeting the criteria for **non-inferiority**

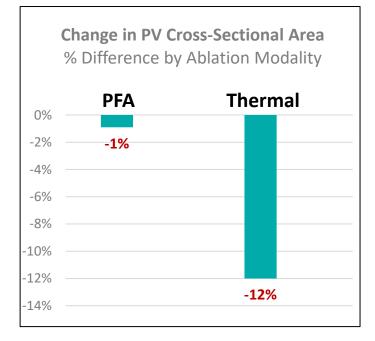
† One patient who sustained a cardiac tamponade subsequently died; accordingly, the individual components add to more than the composite total.

Primary Safety Endpoint

		Serious Composite Safety Events		
	Pulsed Field Group, N = 305 n (%)	Thermal Group, N = 302 n (%)		
Any Composite Safety Event	6 (2.0) †	4 (1.3)		
Death	1 (0.3)	0		
Myocardial infarction	0	0		
Persistent phrenic nerve palsy	0	0		
Stroke	0	1 (0.3)		
Transient ischemic attack	1 (0.3)	0		
Systemic thromboembolism	0	0		
Cardiac tamponade or perforation	2 (0.7)	0		
Pericarditis	1 (0.3)	0		
Pulmonary edema	1 (0.3)	1 (0.3)		
Vascular access complication	1 (0.3)	2 (0.7)		
Heart block	0	0		
Gastric motility/ pyloric spasm	0	0		
Pulmonary vein stenosis	0	0		
Atrio-esophageal fistula	0	0		

Is this death <u>spurious</u> or specific to PFA?

- The pentaspline PFA catheter received CE-Mark Approval in March 2021
- Registry of <u>all sites</u> performing PFA
 - > 24 EU centers / 77 operators
 - > 1,568 patients
- Mortality:
 - ➤ 1 in 1,568 → 0.06%


M.Turagam, P.Neuzil, B.Schmidt...VY.Reddy, Circulation 148:35–46 (2023)

Difference in Incidence of CSE (PFA - Thermal)

[†] One patient who sustained a cardiac tamponade subsequently died; accordingly, the individual components add to more than the composite total.

Secondary Safety Endpoint

- Is there any evidence of tissue specificity to PFA?
- Assess for any changes in post-ablation PV diameter
 → Differentially favorable healing with PFA??
- Greater reduction in PV cross-sectional area in the thermal (-1.18 cm²; **12.0%**) versus PFA (-0.18 cm²; **0.9%**) group
- Met the prespecified criterion for <u>superiority</u> of PFA

Change in PV cross-sectional area	Pulsed Field Group (n=305)	Thermal Group (n=302)	Difference (95% Credible Interval)	Posterior Probabilities – Superiority
Absolute difference, cm ² , mean (95% BCI)	-0.18 (-0.37, 0.00)	-1.18 (-1.39, -0.97)	1.00 (0.72, 1.28)	>0.999
Percent difference, mean (95% BCI)	-0.9% (-3.0, 1.1)	-12.0% (-14.2, -9.7)	11.0% (8.0, 14.1)	

Additional Safety Endpoint – Serious & Non-Serious CSE

		Serious Composite Safety Events		Serious & Non-Serious Composite Safety Events	
	Pulsed Field Group, N = 305 n (%)	Thermal Group, N = 302 n (%)	Pulsed Field Group, N = 305 n (%)	Thermal Group, N = 302 n (%)	
Any Composite Safety Event	6 (2.0) †	4 (1.3)	7 (2.3) †	6 (2.0)	
Death	1 (0.3)	0	1 (0.3)	0	
Myocardial infarction	0	0	0	0	
Persistent phrenic nerve palsy	0	0	0	2 (0.7)	
Stroke	0	1 (0.3)	0	1 (0.3)	
Transient ischemic attack	1 (0.3)	0	1 (0.3)	0	
Systemic thromboembolism	0	0	0	0	
Cardiac tamponade or perforation	2 (0.7)	0	2 (0.7)	0	
Pericarditis	1 (0.3)	0	2 (0.7)	0	
Pulmonary edema	1 (0.3)	1 (0.3)	1 (0.3)	1 (0.3)	
Vascular access complication	1 (0.3)	2 (0.7)	1 (0.3)	2 (0.7)	
Heart block	0	0	0	0	
Gastric motility/ pyloric spasm	0	0	0	0	
Pulmonary vein stenosis	0	0	0	0	
Atrio-esophageal fistula One patient who sustained a cardiac tamponade s	0	0 ne individual components ad	0 d to more than the composite	0 total	

Both thermal subjects treated with cryoballoon ablation

accordingly, the individual components

Additional Safety Endpoints

	Pulsed Field Subjects no. / total no. (%)	Thermal Subjects no. / total no. (%)		
Phrenic Nerve Injury (PNI)				
Intraprocedural PNI Resolved during ablation procedure	1/305 (0.3)	4/302 (1.3)		
Resolved PNI With documented resolution	3/305 (1.0)	1/302 (0.3)		
Persistent PNI Without documented resolution	0/305 (0)	2/302 (0.7)		
Total with any PNI	4/305 (1.3)	7/302 (2.3)		
Brain MRI Sub-Study: Silent Cerebral Lesions / Events (MRI within 48 hours)				
Center Adjudicated	6/34 (17.6)	4/37 (10.8)		
Core Lab Adjudicated	3/33 (9.1)	0/37 (0)		

Limitations

- Trial was not powered for superiority
- Implantable loop recorders not employed → Cannot rule out undetected asymptomatic recurrences of AF/AFL
- These safety and efficacy data may not be applicable for other PFA technologies

Conclusions

- The ADVENT RCT demonstrated that in performing PVI for the treatment of Paroxysmal AF, the safety and effectiveness of PFA was non-inferior to thermal ablation (either RFA or CBA)
 - > By operating physicians who were highly-experienced with thermal ablation, but not PFA
- With all ablation technologies, ablation safety and success were better than anticipated
 > One-year results across all modalities were similar
- Significantly more efficient procedure times with PFA
- PV narrowing not observed with PFA (unlike with thermal ablation)
- Data consistent with initial post-approval EU clinical experience *

* M.Turagam, P.Neuzil, B.Schmidt ... VY.Reddy, MANIFEST-PF Registry Circulation 148:35–46 (2023)

Thank You

The NEW ENGLAND JOURNAL of MEDICINE

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Pulsed Field or Conventional Thermal Ablation for Paroxysmal Atrial Fibrillation

Vivek Y. Reddy, M.D., Edward P. Gerstenfeld, M.D., Andrea Natale, M.D.,
William Whang, M.D., Frank A. Cuoco, M.D., Chinmay Patel, M.D.,
Stavros E. Mountantonakis, M.D., Douglas N. Gibson, M.D.,
John D. Harding, M.D., Christopher R. Ellis, M.D., Kenneth A. Ellenbogen, M.D.,
David B. DeLurgio, M.D., Jose Osorio, M.D., Anitha B. Achyutha, M.Tech., M.S.E.,
Christopher W. Schneider, M.Eng., Andrew S. Mugglin, Ph.D.,
Elizabeth M. Albrecht, Ph.D., Kenneth M. Stein, M.D.,
John W. Lehmann, M.D., M.P.H., and Moussa Mansour, M.D.,
for the ADVENT Investigators*

