DICTATE-AHF
Efficacy and Safety of Dapagliflozin in Acute Heart Failure
NCT04298229

Zachary Cox, PharmD
Professor, Lipscomb University College of Pharmacy, USA
Department of Pharmacy, Vanderbilt University Medical Center
On behalf of DICTATE-AHF Investigators

August 28, 2023
Background

Two Goals for Acute Heart Failure

1) Decongestion

2) GDMT Optimization

<table>
<thead>
<tr>
<th>Two Goals for Acute Heart Failure</th>
<th>Improve Post-DC Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop + Acetazolamide</td>
<td>No Improvement</td>
</tr>
<tr>
<td>Loop + Thiazide</td>
<td>No Improvement</td>
</tr>
<tr>
<td>Loop + SGLT2i</td>
<td>Improved Outcomes</td>
</tr>
</tbody>
</table>

1) Decongestion

- Loop + Acetazolamide: ✅
- Loop + Thiazide: ✅
- Loop + SGLT2i: ❓

2) GDMT Optimization

- Loop + Acetazolamide: ✗
- Loop + Thiazide: ✗
- Loop + SGLT2i: ✓

ESC Congress 2023
Amsterdam & Online
Background

• Concerns of very early in-hospital SGLT2 inhibitor SAFETY:
 • Hypoglycemia
 • Ketoacidosis
 • Worsening renal function
 • Genitourinary infections
 • Questionable magnitude of diuretic and natriuretic benefit

Early addition of Dapagliflozin is a potential strategy to improve achievement of both primary AHF therapeutic goals, but **efficacy and safety** are unknown.
DICTATE-AHF Design

- Investigator-initiated, multicenter, prospective, randomized, open-label study funded by AstraZeneca
 - Objective efficacy outcomes and blinded assessment of safety outcomes
- 240 Patients regardless of LVEF hospitalized with hypervolemic AHF were randomized
- Beginning April 2020, only patients with Type 2 diabetes mellitus were included
 - September 2021 - protocol amended to include:
 - With or without type 2 diabetes mellitus
 - eGFR $\geq 25 \text{ mL/min/1.73m}^2$
Key Inclusion Criteria

• Age of 18 years or older
• Randomized within 24 hours of presentation hypervolemic AHF:
 o ≥2 objective measures of hypervolemia
• Planned or current use of IV loop diuretic therapy
• eGFR ≥ 25 mL/min/1.73m²
Key Exclusion Criteria

- Type 1 diabetes
- Serum glucose < 80mg/dL
- Systolic blood pressure < 90mmHg
- IV inotropic therapy
- History of diabetic ketoacidosis
- Inability to perform standing weights or measure urine output accurately
DICTATE-AHF

Dapagliflozin 10mg Daily + structured usual care with protocolized diuretic titration (N=120)

Structured usual care with protocolized diuretic titration (N=120)

IV loops titrated via protocol in both treatment arms to Goal 3-5L UOP/day

Screening
Randomization
Baseline Assessments

< 24 hours
Hospital Admission
Study Day 1
Study Day 2
24H urine collection
Study Day 5
(Or D/C if sooner)
30-Day Follow-up

ESCPes Congress 2023
Amsterdam & Online
Primary Outcome

Diuretic Efficiency = \frac{\text{Cumulative weight change (kg)}}{\text{Cumulative loop diuretic dose (mg)}}

• Calculated until Day-5 or hospital discharge if sooner
• Expressed as $kg/40mg$ IV Furosemide equivalents
• Compared across treatment assignment using a proportional odds regression model adjusting for baseline weight
Study Outcomes

Secondary Outcomes adjudicated by blinded committee
• Incidence of worsening HF during hospital stay
• HF-related or diabetes-related 30-day readmissions

Safety Outcomes adjudicated by blinded committee
• Incidence of diabetic ketoacidosis
• Prolonged hospitalization for hypotension
• Prolonged hospitalization for hypoglycemia
• Change in eGFR from baseline to end-of-study

Select Exploratory Outcomes
• Measures of natriuresis and diuresis
• Hospital length of stay
Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total Population (N=238)</th>
<th>Usual Care (N=119)</th>
<th>Dapagliflozin (N=119)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>65 (56 – 73)</td>
<td>64 (55 – 74)</td>
<td>65 (56 – 73)</td>
</tr>
<tr>
<td>Male Sex</td>
<td>61%</td>
<td>56%</td>
<td>66%</td>
</tr>
<tr>
<td>White Race</td>
<td>68%</td>
<td>71%</td>
<td>66%</td>
</tr>
<tr>
<td>T2DM</td>
<td>71%</td>
<td>71%</td>
<td>71%</td>
</tr>
<tr>
<td>LVEF ≤ 40%</td>
<td>52%</td>
<td>55%</td>
<td>48%</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>121 (110 – 136)</td>
<td>120 (110 – 136)</td>
<td>121 (112 – 136)</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73m^2)</td>
<td>53 (42 – 70)</td>
<td>54 (40 – 71)</td>
<td>51 (43 – 68)</td>
</tr>
<tr>
<td>IV furosemide dose prior to randomization (mg)</td>
<td>80 (40 – 140)</td>
<td>80 (80 – 120)</td>
<td>80 (40 - 160)</td>
</tr>
</tbody>
</table>
Primary Outcome

Adjusted Odds Ratio 0.65
(95% CI 0.41 – 1.01); P=0.06

Unadjusted Odds Ratio 0.64
(95% CI 0.41 – 1.00)
Primary Outcome Components

Cumulative Weight Change

- Usual Care
- Dapagliflozin

Cumulative Loop Diuretic Dose

- Median 800mg (IQR 380 - 1715)
- Median 560mg (IQR 260 - 1150)

P = 1.0

P = 0.006
Heterogeneity of Treatment Effect

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>No. of Patients</th>
<th>Treatment</th>
<th>Usual Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>145</td>
<td>-0.45 (-0.57, -0.33)</td>
<td>-0.32 (-0.43, -0.22)</td>
</tr>
<tr>
<td>Female</td>
<td>93</td>
<td>-0.36 (-0.50, -0.22)</td>
<td>-0.29 (-0.40, -0.19)</td>
</tr>
<tr>
<td>Edema score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No/Mild</td>
<td>66</td>
<td>-0.27 (-0.39, -0.15)</td>
<td>-0.34 (-0.49, -0.19)</td>
</tr>
<tr>
<td>Moderate</td>
<td>92</td>
<td>-0.51 (-0.67, -0.34)</td>
<td>-0.29 (-0.40, -0.19)</td>
</tr>
<tr>
<td>Severe</td>
<td>65</td>
<td>-0.50 (-0.68, -0.33)</td>
<td>-0.29 (-0.42, -0.16)</td>
</tr>
<tr>
<td>NT-proBNP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below median</td>
<td>115</td>
<td>-0.36 (-0.48, -0.25)</td>
<td>-0.25 (-0.35, -0.15)</td>
</tr>
<tr>
<td>Above median</td>
<td>115</td>
<td>-0.49 (-0.64, -0.34)</td>
<td>-0.36 (-0.48, -0.25)</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below median</td>
<td>121</td>
<td>-0.50 (-0.64, -0.36)</td>
<td>-0.34 (-0.46, -0.22)</td>
</tr>
<tr>
<td>Above median</td>
<td>117</td>
<td>-0.33 (-0.45, -0.22)</td>
<td>-0.28 (-0.38, -0.19)</td>
</tr>
<tr>
<td>eGFR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below median</td>
<td>120</td>
<td>-0.30 (-0.40, -0.20)</td>
<td>-0.28 (-0.38, -0.18)</td>
</tr>
<tr>
<td>Above median</td>
<td>118</td>
<td>-0.57 (-0.72, -0.41)</td>
<td>-0.32 (-0.43, -0.22)</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below median</td>
<td>123</td>
<td>-0.47 (-0.60, -0.34)</td>
<td>-0.32 (-0.44, -0.21)</td>
</tr>
<tr>
<td>Above median</td>
<td>115</td>
<td>-0.36 (-0.48, -0.24)</td>
<td>-0.30 (-0.39, -0.20)</td>
</tr>
<tr>
<td>Type 2 Diabetes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>69</td>
<td>-0.48 (-0.66, -0.30)</td>
<td>-0.35 (-0.49, -0.20)</td>
</tr>
<tr>
<td>Yes</td>
<td>169</td>
<td>-0.39 (-0.50, -0.29)</td>
<td>-0.30 (-0.38, -0.21)</td>
</tr>
<tr>
<td>Ejection Fraction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><= 40</td>
<td>115</td>
<td>-0.49 (-0.64, -0.35)</td>
<td>-0.33 (-0.43, -0.22)</td>
</tr>
<tr>
<td>> 40</td>
<td>108</td>
<td>-0.35 (-0.46, -0.24)</td>
<td>-0.29 (-0.39, -0.18)</td>
</tr>
</tbody>
</table>

Overall | 238 | -0.42 (-0.52, -0.32) | -0.31 (-0.39, -0.23) |
Improved 24-Hour Natriuresis with Dapagliflozin

- Median 35 (IQR 19-63) mmol/40mg IV Furosemide
- Median 50 (IQR 24-102) mmol/40mg IV Furosemide

P = 0.025

P = 0.005

Δ 80mg IV Furosemide

Median 24-H IV Furosemide dose (mg)

Usual Care

Dapagliflozin

ESC Congress 2023
Amsterdam & Online
Improved 24-Hour Diuresis with Dapagliflozin

Median 403 (IQR 249 - 750) mL/40mg IV Furosemide

Median 634 (IQR 333 - 1275) mL/40mg IV Furosemide

P = 0.005

24-hour urine output (mL/40mg IV Furosemide)
Shorter Time to discontinue IV Diuretics and to Discharge

- **52%**
- **33%**

p = 0.006

p = 0.007
Secondary Outcomes

<table>
<thead>
<tr>
<th>Secondary Outcomes, N</th>
<th>Usual Care</th>
<th>Dapagliflozin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worsening heart failure</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>30-day hospital readmission for ADHF or diabetes-related reasons</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>ADHF-related readmission</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Diabetes-related readmission</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Safety Outcomes and Adverse Events

<table>
<thead>
<tr>
<th>Safety Outcomes</th>
<th>Usual Care</th>
<th>Dapagliflozin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketoacidosis</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Symptomatic hypotension</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Prolonged hospitalization for hypotension</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Prolonged hospitalization for hypoglycemia</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Genitourinary tract infections</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Change in eGFR (mL/min/1.73m²)</td>
<td>-3.0 (-9 to 2)</td>
<td>-2.0 (-10 to 4)</td>
</tr>
</tbody>
</table>
Conclusions

Despite standardized, high-dose IV loop diuretics:

1. Dapagliflozin had a strong signal to improve diuretic efficiency supported by:
 - Increased natriuresis and diuresis per 40mg of IV furosemide
 - Decreased total dose and duration of loop diuretics required
 - Decreased time to hospital discharge

2. Early dapagliflozin initiation was safe across all diabetic and cardiorenal outcomes

Totality of DICTATE-AHF data supports the early initiation of dapagliflozin in AHF to safely facilitate decongestion and GDMT optimization
DICTATE-AHF Study Team

Principal Investigator: JoAnn Lindenfeld
Co-PI: Zachary Cox
Co-Investigator: Sean Collins

Site Investigators:
Zachary Cox, Pharm.D. – Vanderbilt University
Gabriel Hernandez, M.D. – University of Mississippi
Kirkwood Adams, M.D. – University of North Carolina
A. Tom McRae, M.D. – Centennial Hospital
Mark Aaron, M.D. - St Thomas Hospital System
Luke Cunningham, M.D. – Integris Medical Center

Clinical Coordinating Center:
Sean Collins, Christy Kampe, Karen Miller

Data Coordinating Center:
Chris Lindsell, Frank Harrell, Cathy Jenkins