

OCT versus Angiography Guided PCI ILUMIEN IV: OPTIMAL PCI

Ziad A Ali MD DPhil

St Francis Heart Center Cardiovascular Research Foundation New York Institute of Technology <u>ziad.ali@dcvi.org</u> ∑Follow me @ziadalinyc

Background

- PCI is most commonly guided by angiography alone
- OCT is a high-resolution intravascular imaging modality that can be used to guide and optimize PCI
- In ILUMIEN III,¹ OCT guidance improved procedural success compared with angiography guidance
 - Greater stent expansion
 - Reduced major malapposition and major dissection
- Whether OCT can improve clinical outcomes is unknown

Study Flow

ClinicalTrials.gov #NCT03507777

Qualifying High-risk Criteria

High-risk Patient

Medication-treated diabetes mellitus

High-risk Lesion

- NSTEMI
- STEMI >24 hours from symptom onset
- Long or multiple lesions (planned total stent length ≥28 mm)
- Diffuse or multi-focal in-stent restenosis
- Angiographic severe calcification
- Chronic total occlusion
- Bifurcation, planned to be treated with 2 stents

Endpoints

1. Primary Imaging Endpoint (powered) Post-PCI MSA assessed by OCT

Superiority of OCT to angiography $\Delta 0.4 \text{ mm}^2$, SD 2.2 mm², 1600 randomized patients = 95% power at one-sided $\alpha 0.025$

2. Primary Clinical Endpoint (powered) TVF during 2-year follow-up

Superiority of OCT to angiography Control TVF 12.0%, HR 0.65, 1230 randomized patients = 90% power at one-sided α 0.025

3. Safety Endpoints (not powered) Stent thrombosis and procedural complications

Randomization and Follow-up

LUMIEN IN

Study Organization

- Principal Investigators: Ziad Ali, Ulf Landmesser
- Chairman: Gregg Stone
- Academic Research Organization: Cardiovascular Research Foundation
- Steering Committee: Gregg Stone, Ziad Ali, Ulf Landmesser, Takashi Akasaka, Hiram Bezerra, Giulio Guagliumi, Jonathan Hill, Francesco Prati, Matthew Price, Richard Shlofmitz, William Wijns
- Intravascular Imaging Core Lab: CRF Akiko Maehara (Director)
- Angiographic Core Lab: CRF Ivana Jankovic (Deputy Director)
- Data Safety Monitoring: CRF John Hirshfeld (Director)
- Clinical Endpoints Committee: Ozgen Dogan (Chair)
- Site Monitoring & Data Management: Abbott Vascular
- Sponsor and Funding Source: Abbott Vascular

Highest Enrollers

Investigator	Institution	City, State, Country	Ν
Richard Shlofmitz	St. Francis Hospital	Roslyn, NY, USA	301
Franco Fabbiocchi	Centro Cardiologico Monzino	Milan, Italy	140
Fernando Alfonso	Hospital Universitario de la Princesa	Madrid, Spain	131
Paolo Canova	Ospedale Papa Giovanni XXIII	Bergamo, Italy	116
David Leistner	Universitatsmedizin Berlin	Berlin, Germany	113
Rohit Oemrawsingh	Albert Schweitzer Ziekenhuis	Dordrecht, Netherlands	82
Matthew Price	Scripps Health	La Jolla, CA, USA	72
Stephan Achenbach	Kliniken der Friedrich-Alexander	Erlangen, Germany	69
Carlo Trani	Policlinico Universitario A. Gemelli	Rome, Italy	68
Balbir Singh	Max Super Specialty Hospital	New Delhi, India	62

Baseline Characteristics

	OCT (n=1233)	Angio (n=1254)
Age, years	65.5 ± 10.5	65.7 ± 10.3
Male	78.5%	76.2%
Hypertension	71.4%	74.0%
Dyslipidemia	65.5%	68.6%
Diabetes mellitus	42.4%	41.5%
Current smoker	19.6%	19.7%
Serum creatinine, mg/dl	0.96 ± 0.23	0.96 ± 0.25
Silent ischemia	14.0%	15.4%
Stable angina	27.0%	28.5%
Acute coronary syndrome	59.0%	66.1%

Qualifying Characteristics

	OCT (n=1231)	Angio (n=1250)	Difference [95% CI]
Medication-treated diabetes mellitus	40.4%	39.8%	0.5% (-3.3, 4.4)
Long or multiple lesions	69.3%	65.9%	3.4% (-0.3, 7.0)
NSTEMI	24.5%	23.8%	0.6% (-2.8, 4.0)
Angiographic severe calcification	11.4%	11.7%	-0.3% (-2.8, 2.2)
In-stent restenosis (ISR)	10.6%	11.0%	-0.5% (-2.9, 2.0)
Chronic total occlusion (CTO)	7.6%	6.3%	1.3% (-0.7, 3.3)
STEMI (>24 hours from onset)	5.4%	5.6%	-0.2% (-2.1, 1.6)
Bifurcation with 2 planned stents	3.2%	3.4%	-0.2% (-1.6, 1.3)

Angiographic Characteristics

	OCT (L=1320)	Angio (L=1387)	Difference [95% CI]
LAD/LCx/RCA	53.3/ 19.0/ 27.7%	50.9/ 20.6/ 28.5%	
Thrombus	6.8%	7.4%	-0.6% (-2.6, 1.4)
Calcification (severe)	32.0%	29.7%	2.3% (-1.2, 5.8)
Reference vessel diameter, mm	2.93 ± 0.43	2.90 ± 0.42	0.0 (-0.0, 0.01)
Minimum lumen diameter, mm	0.88 ± 0.43	0.88 ± 0.42	-0.0 (-0.0, 0.0)
Diameter stenosis, %	69.8 ± 13.9	69.6 ± 13.8	0.3 (-0.8, 1.3)
Lesion length, mm	32.9 ± 15.9	29.9 ± 16.1	3.0 (1.7, 4.2)
TIMI III flow	81.4%	79.3%	2.1% (-0.9, 5.2)

Procedural Characteristics

	OCT (n=1233)	Angio (n=1254)	Difference [95% Cl]
Stents per patient	1.7 ± 0.9	1.6 ± 0.8	0.1 (0.0, 0.2)
Stent length, mm	44.2 ± 23.8	40.5 ± 24.0	3.8 (1.9, 5.6)
Maximal stent diameter, mm	3.22 ± 0.48	3.11 ± 0.40	0.11 (0.07, 0.14)
Post-dilatation balloons used, n	1.6 ± 1.2	1.3 ± 1.2	0.3 (0.2, 0.4)
Maximum device size, mm	3.67 ± 0.56	3.37 ± 0.47	0.31 (0.27, 0.34)
Maximum inflation pressure, atm	19.8 ± 3.1	18.4 ± 3.3	1.4 (1.2, 1.7)
Procedure duration, min	68.3 ± 38.3	50.0 ± 35.4	18.3 (15.4, 21.2)
Fluoroscopy duration, min	20.9 ± 13.8	17.4 ± 11.8	3.6 (2.6, 4.6)
Radiation dose, Gy	2.01 ± 1.75	1.55 ± 1.36	0.46 (0.32, 0.60)
Contrast volume, mL	231.9 ± 88.2	198.3 ± 81.7	33.7 (27.0, 40.4)

Primary Imaging Endpoint Final post-PCI MSA by OCT (mm²)

OCT	Angio	Difference	P-Value
L=1222	L=1328	[95% CI]	
5.72 ± 2.04	5.36 ± 1.87	0.36 (0.21, 0.51)	<0.001

Stent Expansion Endpoints

	OCT (L=1228)	Angio (L=1329)	Difference [95% Cl]
Min stent expansion, %	80.8 ± 16.8	78.0 ± 16.7	2.9 (1.6, 4.2)
Mean stent expansion, %	111.3 ± 16.3	103.0 ± 17.2	8.2 (6.9, 9.5)
Stent expansion			
- Acceptable (≥90%)	40.5%	23.3%	17.2% (13.6, 20.8)

	OCT (L=1228)	Angio (L=1329)	Difference [95% CI]
Dissection, any	32.0%	34.2%	-2.2% (-5.9, 1.4)
Major	2.9%	5.1%	-2.2% (-3.9, -0.6)
Minor	22.7%	19.4%	3.3% (-0.1, 6.6)
		Major Diss 1) Angle > 2) Length 20 <u>3mm</u>	ection 60° >3 mm 30

Length

Angle

	OCT (L=1228)	Angio (L=1329)	Difference [95% CI]
Malapposition, any	55.3%	69.7%	-14.4% (-18.1, -10.6)
Major	15.8%	33.2%	-17.4% (-20.6, -14.1)
Minor	39.4%	36.5%	3.0% (-0.8, 6.7)

Major

Strut(s) >0.2 mm from vessel edge and stent underexpansion

	OCT (L=1228)	Angio (L=1329)	Difference [95% CI]
Tissue Protrusion, any	55.9%	47.0%	8.9% (5.0, 12.8)
Major	5.3%	8.3%	-3.0% (-4.9, -1.0)
Minor	50.6%	38.7%	11.9% (8.1, 15.7)

Major Mass >0.2 mm from vessel edge and protrusion area/stent area ≥10% ILUMIEN IV

ILUMIEN IV

	OCT (L=1228)	Angio (L=1329)	Difference [95% CI]
Reference Disease, any	17.3%	20.1%	-2.8% (-5.9, 0.3)
Focal	9.5%	12.1%	-2.7% (-5.1, -0.2)
Diffuse	7.8%	8.0%	-0.1% (-2.3, 2.0)

MLA in the reference segment <4.5mm²

Angiographic Complications (Core Laboratory)

	ОСТ (I=1320)	Angio (l=1387)	Difference [95% CI]
Final angiographic complications	3.6%	5.3%	-1.7% (-3.3, -0.1)
Dissection ≥ type B	1.2%	1.5%	-0.3% (-1.2, 0.6)
Slow flow or no reflow	0.2%	0.5%	-0.3% (-0.8, 0.2)
Thrombus	0.3%	0.7%	-0.4% (-1.1, 0.2)
Abrupt closure	0.0%	0.0%	0.0% (-0.3, 0.3)
Perforation	0.2%	0.0%	0.2% (-0.1, 0.7)
Distal embolization	0.9%	1.3%	-0.4% (-1.2, 0.4)
Procedure-related stent thrombosis	0.0%	0.1%	-0.1% (-0.4, 0.2)
Procedure-related thrombotic events	2.3%	4.1%	-1.8% (-3.1, -0.4)
Catheter-related complications	0.1%	0.2%	-0.1% (-0.5, 0.3)

Primary Clinical Endpoint – Target Vessel Failure

Cardiac Death

Target-Vessel MI

Ischemia-Driven Target Vessel Revascularization

Stent Thrombosis (Def/Prob)

2-Year Clinical Outcomes

	OCT (n=1233)	Angio (n=1254)	Hazard Ratio (95% CI)
All-cause mortality	2.7%	3.6%	0.73 (0.47, 1.16)
-Cardiac	0.8%	1.3%	0.57 (0.25, 1.29)
-Vascular	0.3%	0.3%	0.76 (0.17, 3.38)
-Non-cardiovascular	1.7%	2.0%	0.84 (0.46, 1.52)
All MI	4.8%	6.0%	0.80 (0.56, 1.13)
-TV-MI	2.5%	3.3%	0.77 (0.48, 1.22)
-Periprocedural MI	1.4%	1.7%	0.82 (0.43, 1.56)
-Non-periprocedural MI	3.4%	4.4%	0.77 (0.51, 1.17)
All revascularization	9.4%	10.1%	0.94 (0.72, 1.21)
- ID-TVR	5.6%	5.6%	0.99 (0.71, 1.40)
- ID-TLR	4.5%	4.3%	1.05 (0.71, 1.54)
- ID-TVR/non-TLR	1.8%	2.4%	0.79 (0.45, 1.38)

Covid Impact

Conclusions 1

 OCT-guidance resulted in a larger MSA than angiography guidance, with greater stent expansion

 OCT-guidance led to fewer major dissections, major malapposition, major tissue protrusion and untreated focal reference segment disease

OCT-guidance reduced angiographic complications

Conclusions 2

- The 2-year rates of TVF were not statistically different between OCT-guided and angiography-guided PCI
- OCT-guided PCI significantly reduced stent thrombosis
- There were trends for fewer cardiac deaths and MI with OCTguidance, consistent with prior intravascular-imaging studies
- Rates of TVR were lower than expected, a finding possibly impacted by the COVID pandemic

Simultaneous Publication

NEJM

The NEW ENGLAND JOURNAL of MEDICINE

LUMIEN

ORIGINAL ARTICLE

Optical Coherence Tomography–Guided versus Angiography-Guided PCI

Ziad A. Ali, M.D., D.Phil., Ulf Landmesser, M.D., Akiko Maehara, M.D., Mitsuaki Matsumura, B.S., Richard A. Shlofmitz, M.D., Giulio Guagliumi, M.D., Matthew J. Price, M.D., Jonathan M. Hill, M.D., Takashi Akasaka, M.D., Francesco Prati, M.D., Hiram G. Bezerra, M.D., William Wijns, M.D., Ph.D., David Leistner, M.D., Paolo Canova, M.D., Fernando Alfonso, M.D., Franco Fabbiocchi, M.D., Ozgen Dogan, M.D., Robert J. McGreevy, Ph.D., Robert W. McNutt, Ph.D., Hong Nie, Ph.D., Jana Buccola, M.S., Nick E.J. West, M.D., and Gregg W. Stone, M.D., for the ILUMIEN IV Investigators*