#AHA22

## PRECISE

Comparison of a Precision Care Strategy With Usual Testing To Guide Management Of Stable Patients With Suspected Coronary Artery Disease

Pamela S. Douglas, Michael Nanna, Michelle Kelsey, Eric Yow, Daniel Mark, Campbell Rogers, and Sreekanth Vemulapalli, on behalf of the PRECISE Investigators

**Duke Clinical Research Institute** 

Funded by HeartFlow, Inc

American Heart Association.

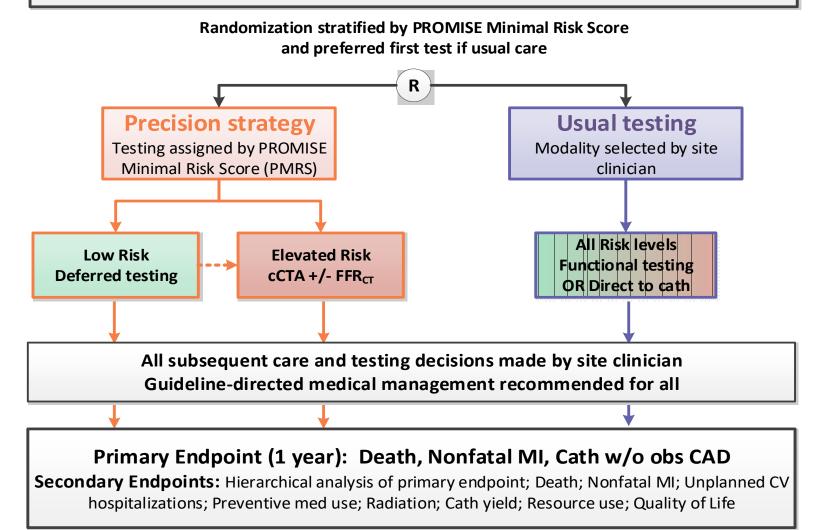
## Background

- New onset stable chest pain is a common problem and requires performance of approximately 4 million tests annually in the US alone
- All clinical practice guidelines (AHA/ACC, ESC, NICE) agree on evaluation goals for such patients, and propose similar strategies to accomplish them. These goals are to:
  - Reduce unnecessary testing by risk stratification and deferred testing
  - Improve diagnostic yield of testing and catheterization
  - Reduce complications and costs by serving as an efficient gatekeeper to invasive testing
  - Optimize preventive medical treatment



## **Need for Evidence and Hypothesis**

- Randomized trial-level evidence is needed to determine the best care pathway to accomplish these consensus goals
  - Prospective validation of a pre-test probability assessment to guide decision making regarding deferral vs immediate testing
  - Prospective evaluation of the safety of deferred testing in symptomatic patients
  - Once a patient is determined to need testing, randomized trial evidence comparing cCTA with selective FFR<sub>CT</sub> versus other modalities as first test

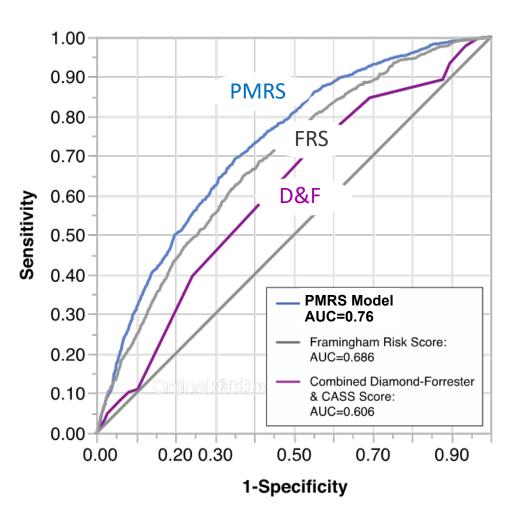

#### PRECISE Hypothesis

 In stable, symptomatic patients with suspected CAD, a Precision Strategy care pathway incorporating a set of actions based on Guideline recommendations will improve outcomes compared to Usual Testing



PRECISE Trial

Non-acute chest pain or equivalent patients requiring testing for suspected CAD No history of obstructive CAD or CAD testing <1 year: N=2103



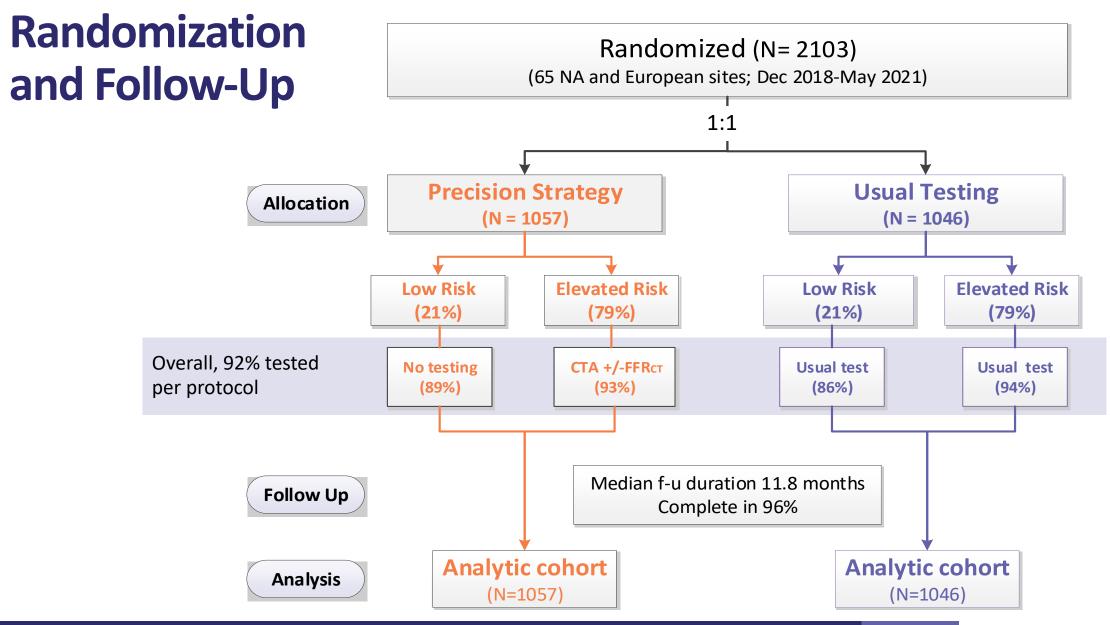



JAMA Cardiology | Original Investigation

Identification of Patients With Stable Chest Pain Deriving Minimal Value From Noninvasive Testing The PROMISE Minimal-Risk Tool, A Secondary Analysis of a Randomized Clinical Trial

- Using 4,631 PROMISE cCTA pts, we modeled Minimal Risk: 27% w/o CAC, plaque or events
- Result: 10 clinical variables predicted Minimal Risk
- Validated in SCOT-Heart, Dan-NICAD (n=3,439)
- Combined in all 3 cohorts: C stat 0.76



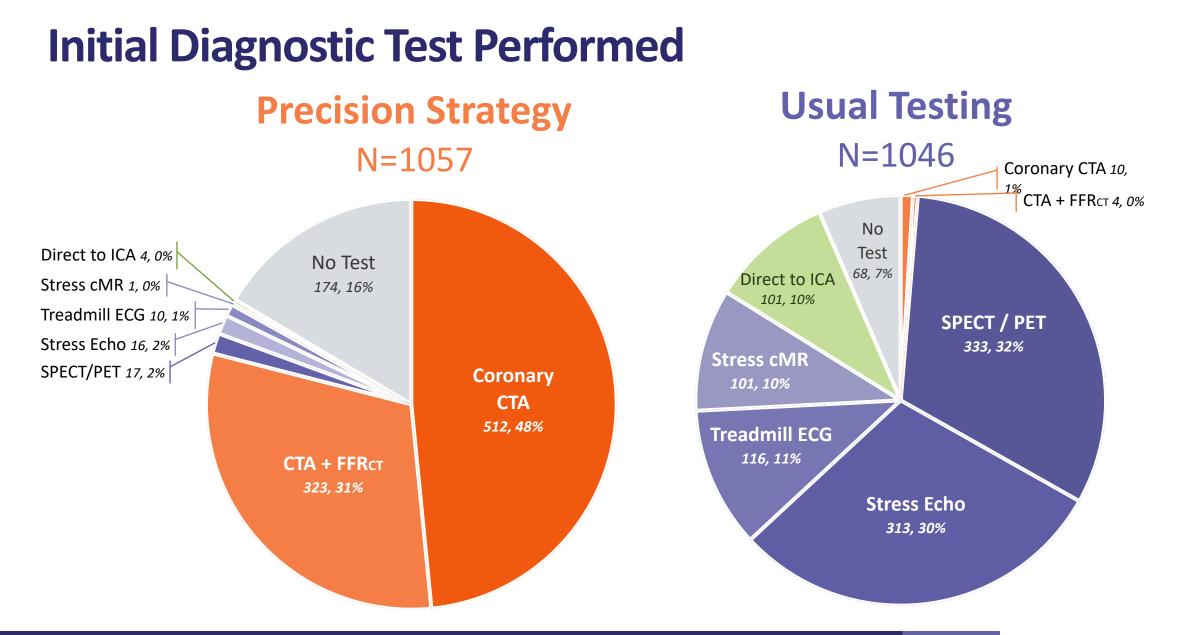

JAMA Cardiology 2017 2:400-408 Intl J Cardiology 2018 252:31-34 Intl J CV Imaging 2021 37:699–706



## **Trial Endpoints and Statistical Analysis**

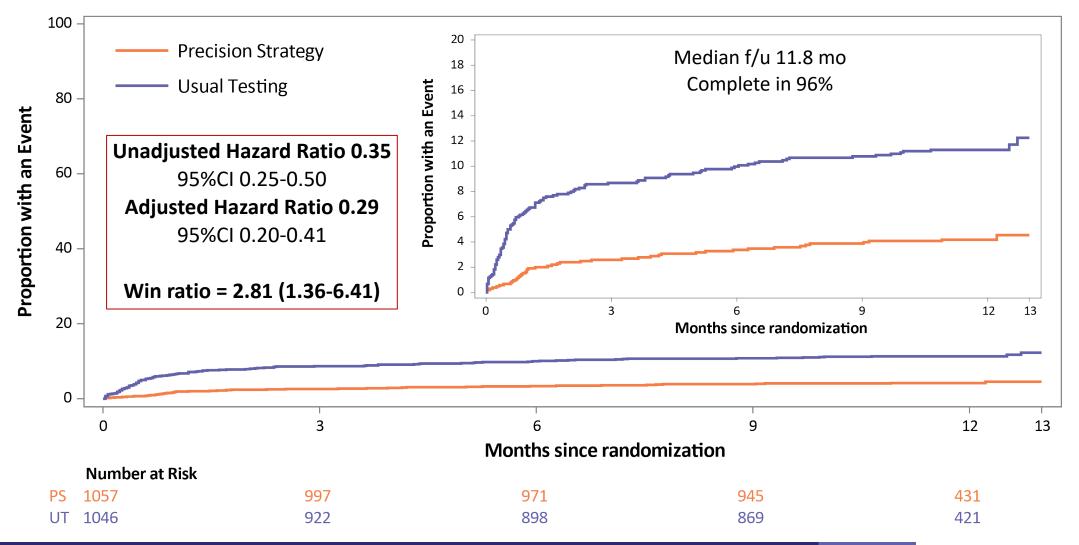
- Composite primary endpoint: All-cause death, nonfatal MI, or cath w/o obstructive CAD
  - Composite defines net clinical effectiveness (efficacy and safety) for this low-risk population
  - Catheterization without obstructive CAD was defined as the absence of any positive invasive FFR/iFR or any QCA-measured stenosis ≥50% in epicardial vessel ≥2mm diameter
  - Lower rates of cath w/o obs CAD associated w better QOL, fewer complications, lower costs
- All primary endpoint events were adjudicated by blinded Clinical Events Committee
- Statistical analysis
  - Sample size of 2100 provided ≥90% power to detect a 35% reduction in primary endpoint
  - All comparisons performed as Intention To Treat with time-to-event analysis, using log rank testing. Cox proportional hazards adjusted for age, sex, CAD risk equivalent, and intended test type at randomization
- The statistical team had full access to the complete data base and performed all analyses independently of the trial sponsor








#### **Baseline Characteristics**


|                 |                                 | <b>Precision Strategy</b><br>(N=1057) | Usual Testing<br>(N=1046) |
|-----------------|---------------------------------|---------------------------------------|---------------------------|
| Demographics    | Age — yr                        | 58.0 ± 11.5                           | 58.9 ± 11.6               |
|                 | Women                           | 508 (48%)                             | 539 (52%)                 |
|                 | Racial or ethnic minority group | 165 (16%)                             | 171 (16%)                 |
| Risk factors    | ≥1 major CV risk factor         | 990 (94%)                             | 985 (94%)                 |
|                 | Hypertension                    | 642 (61%)                             | 606 (58%)                 |
|                 | Diabetes mellitus               | 176 (17%)                             | 197 (19%)                 |
|                 | Dyslipidemia                    | 668 (63%)                             | 681 (65%)                 |
|                 | Family history of premature CAD | 404 (38%)                             | 395 (38%)                 |
|                 | Current or past tobacco use     | 544 (52%)                             | 554 (53%)                 |
| Risk scores     | Updated D-F pretest probability | 16.0 (10.0, 26.0)                     | 16.0 (10.0, 26.0)         |
|                 | ASCVD 10-year                   | 7.92 (3.4, 15.7)                      | 8.22 (3.3, 17.2)          |
| Primary symptom | Chest pain                      | 870 (82%)                             | 876 (84%)                 |
| Anginal type    | Typical angina (cardiac)        | 249 (24%)                             | 257 (25%)                 |







### Primary Endpoint: Death, MI, or Cath w/o Obstructive CAD





## **Primary Endpoint Events**

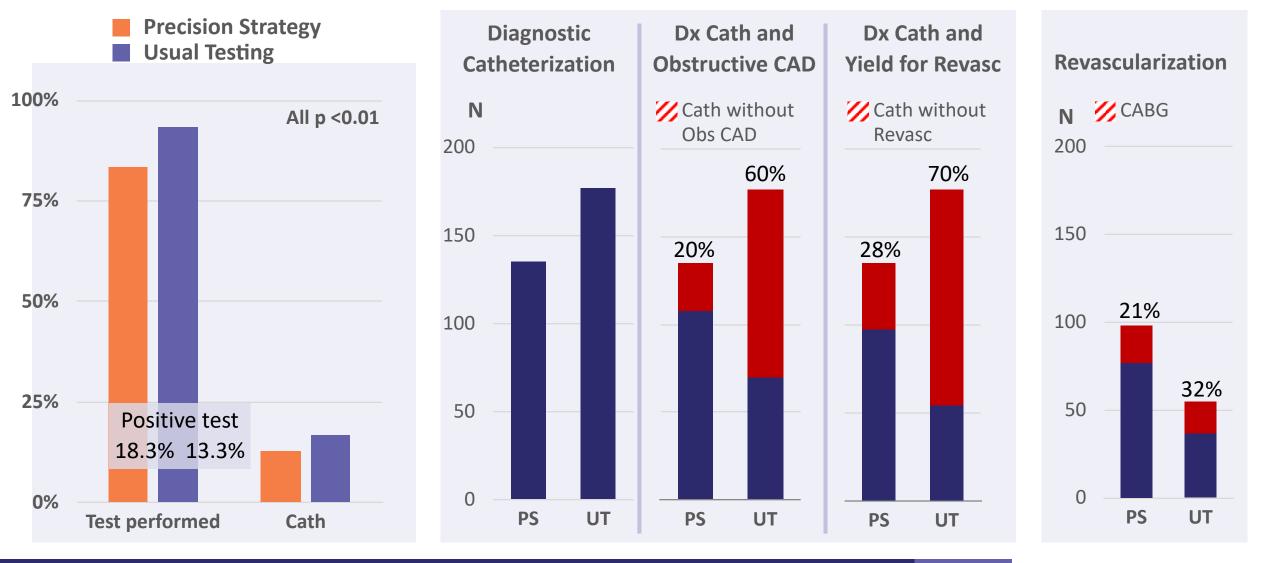
|                            | <b>Precision</b><br><b>Strategy</b><br>(N=1057) | <b>Usual Testing</b><br>(N=1046) | Adjusted<br>Hazard Ratio<br>(95% CI) | P-Value |                                                                  |  |
|----------------------------|-------------------------------------------------|----------------------------------|--------------------------------------|---------|------------------------------------------------------------------|--|
| Primary endpoint composite | 44 (4.2%)                                       | 118 (11.3%)                      | 0.29<br>(0.20-0.41)                  | <0.001  |                                                                  |  |
| Death or MI                | 18 (1.7%)                                       | 12 (1.1%)                        | 1.57<br>(0.76-3.27)                  | Т       | There were no death<br>or MI events in the<br>Precision Strategy |  |
| All cause death            | 5 (0.5%)                                        | 7 (0.7%)                         | 0.74<br>(0.24-2.35)                  |         |                                                                  |  |
| Nonfatal MI                | 13 (1.2%)                                       | 5 (0.5%)                         | 2.67<br>(0.94-7.52)                  |         | participants assigned<br>to deferred testing.                    |  |
| ICA w/o obstructive CAD    | 27 (2.6%)                                       | 107 (10.2%)                      | 0.18<br>(0.12-0.30)                  |         |                                                                  |  |

Notes: Deaths include one participant with a fatal MI.

One MI on the day of randomization was determined by CEC to have preceded study entry and was excluded.



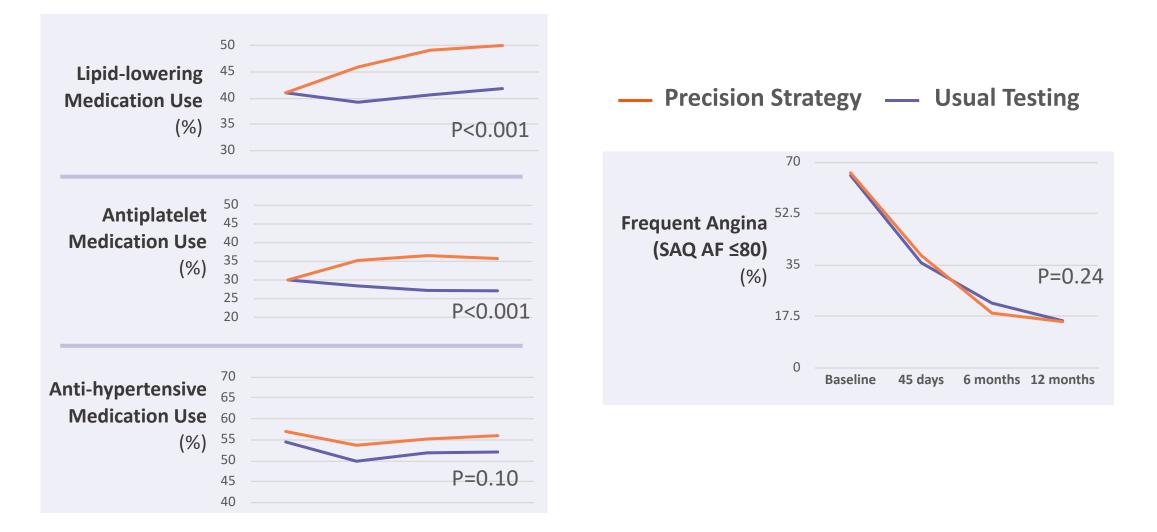
#### Primary Endpoint: Subgroup Analysis


| Favo                                                     | ors Precision Strategy                | Favors Usual testing |                 |                        |
|----------------------------------------------------------|---------------------------------------|----------------------|-----------------|------------------------|
|                                                          | ◀                                     | PS                   | UT              | Interaction<br>P-value |
| Sex                                                      |                                       |                      |                 | 0.417                  |
| Male                                                     |                                       | 27/549 (5.6%)        | 60/507 (12.7%)  |                        |
| Female                                                   |                                       | 17/508 (3.4%)        | 58/539 (11.8%)  | 0.318                  |
| <b>Age</b> <65                                           | ┞──╋──┤                               | 20/737 (2.8%)        | 60/693 (9.4%)   | 0.516                  |
| ≥65                                                      | · · · · · · · · · · · · · · · · · · · | 24/320 (8.8%)        | 58/353 (18.0%)  |                        |
| Race/Ethnicity                                           |                                       |                      |                 | 0.954                  |
| White/non-Hispanic                                       | , ⊢∎-1                                | 39/892 (4.8%)        | 103/875 (12.6%) |                        |
| Other                                                    |                                       | 5/165 (3.2%)         | 15/171 (10.3%)  |                        |
| Geographic region<br>North America                       |                                       | 19/609 (3.8%)        | 38/596 (7.7%)   | 0.143                  |
| Europe                                                   | , – ,<br>⊦-悪┤                         | 25/448 (5.6%)        | 80/450 (18.0%)  |                        |
| CAD equivalent (diabetes or periphera                    | <br>I                                 |                      |                 |                        |
| arterial or cerebrovascular disease)                     |                                       |                      |                 | 0.690                  |
| Yes                                                      |                                       | 12/226 (5.5%)        | 37/237 (15.8%)  |                        |
| No                                                       | -∎-1                                  | 32/831 (4.3%)        | 81/809 (11.2%)  | 0.454                  |
| Primary symptom presentation<br>Typical angina (cardiac) | <b>↓</b>                              | 17/249 (6.9%)        | 41/257 (16.3%)  | 0.451                  |
| Atypical pain (possible cardiac)                         | , ,<br>}∎                             | 16/600 (3.2%)        | 66/597 (11.8%)  |                        |
| Dyspnea                                                  | · · · · ·                             | 4/86 (4.8%)          | 7/77 (15.5%)    |                        |
| Non anginal (non-cardiac)/other                          |                                       | 0/14 (0.0%)          | 0/7 (0.0%)      |                        |
| Intended first test is                                   |                                       |                      |                 | <0.001                 |
| Invasive                                                 | ⊢■→                                   | 8/105 (7.7%)         | 68/105 (66.1%)  |                        |
| Noninvasive<br>PROMISE Minimal Risk Score                |                                       | -H 36/952 (4.2%)     | 50/941 (6.3%)   | 0.640                  |
|                                                          | ↓ <b>_</b>                            | 4/224 (1.8%)         | 14/219 (8.0%)   | 0.648                  |
| Elevated + atherosclerosis                               | ' – '                                 | 40/833 (5.3%)        | 104/827 (13.2%) |                        |
| Diamond and Forrester pre test proba                     | bility                                | ,                    | (,              | 0.882                  |
| <5% pretest probability                                  |                                       | 0/63 (0.0%)          | 1/44 (2.3%)     |                        |
| 5-15%                                                    |                                       | 11/411 (2.8%)        | 39/411 (10.5%)  |                        |
| >15%                                                     | <b>-</b> ∎                            | 26/475 (6.1%)        | 74/483 (16.4%)  | 0.400                  |
| ASCVD 10-year event risk score<br><7.5%                  | <b>↓</b> ∎↓                           | 3/356 (0.9%)         | 25/345 (8.4%)   | 0.109                  |
| 7.5-15%                                                  | , _ , ,                               | 17/374 (4.6%)        | 32/327 (9.9%)   |                        |
| >15%                                                     | ,∎{                                   | 24/327 (8.5%)        | 61/374 (17.7%)  |                        |
|                                                          |                                       |                      |                 |                        |
|                                                          | 0.05 0.25 0.5                         | 1 2 3                |                 |                        |

. .

. . . .




## **Secondary Effectiveness Endpoints**



**Duke** Clinical Research Institute

**PRECISE** 

#### Secondary Effectiveness Endpoints, continued





## Limitations

- The Precision Strategy care pathway includes several actions reflective of real-world decision-making: risk stratification, deferred testing, and use of cCTA with selective FFR<sub>CT</sub> as the initial test. The separate effects of each action cannot be determined
- PRECISE's pragmatic trial design precludes evaluation of different Usual Testing choices or close monitoring of the trial's recommendations to use Optimal Medical Treatment
- PRECISE does not address outcomes beyond the trial duration of 12 months
- Detailed results of outcomes in low risk participants and costs/resource use will be reported separately



## **PRECISE Summary and Conclusion**

- PRECISE demonstrates the net clinical effectiveness of the Precision Strategy with a 70% reduction of the composite of death, non-fatal MI or catheterization without obstructive CAD, compared to Usual Testing at 1 year
- PRECISE addresses critical knowledge gaps in the evaluation of symptomatic, low-intermediate risk patients with suspected CAD, by defining and testing a specific care pathway concordant with Guideline recommendations
  - Outcomes were improved using deferred testing for quantitively-determined minimal-risk patients and cCTA with selective FFR<sub>CT</sub> in all others
- The Precision Strategy is a preferred approach in evaluating patients with stable symptoms and suspected coronary artery disease



#### **THANK YOU** to PRECISE Participants, Investigators, Sites





## **THANK YOU to the PRECISE Team!!**

#### **Steering Committee**

- Pamela S. Douglas, Chair
- Ori Ben-Yehuda
- Colin Berry
- Robert A. Byrne
- Nick Curzen
- Bernard De Bruyne
- Christopher B. Fordyce
- Michelle Kelsey
- Christopher Kramer
- Jonathon Leipsic
- Daniel Mark
- Sarah Mullen
- Michael Nanna
- Manesh R. Patel
- Campbell Rogers
- Gregg W. Stone
- James E. Udelson
- Robert W. Yeh

#### **Statistical Team**

- Hussein Al-Khalidi
- Eric Yow

#### **Operational Leadership**

- Aija Caune
- Whitney Huey
- Beth Martinez
- Sarah Mullen

#### **Clinical Events Committee**

- Shea E. Hogan, Co-chair
- Bjorn Redfors, Co-chair
- Marc Bonaca
- David J. Engel
- W. Schuyler Jones

#### QCA Core Lab, CRF

• Ziad A. Ali

#### Data and Safety Monitoring Board, CRF

- Anthony N. DeMaria, Chair
- Andrew Kahn
- Robert A. Pelberg
- Stuart J. Pocock
- Binita Shah
- Ozgu Melek Issever (non-voting)

#### Participant Research Operations, DCRI

- Khaula Baloch
- Jennifer Martin
- Betsy O'Neal
- Tina Harding
- Linda Davidson-Ray
- Thomas Redick
- PRO Interviewers



# PRECISE THANK YOU





#AHA22

