Prospective Multicenter Trial of Pharmacomechanical Catheter-Directed Thrombolysis with the Bashir Endovascular Catheter for Acute Pulmonary Embolism

The RESCUE Study

SEPTEMBER 16-19, 2022 BOSTON CONVENTION AND EXHIBITION CENTER BOSTON, MA

Riyaz Bashir MD, FACC Temple University Hospital

On Behalf of RESCUE Investigators

Funding support: NHLBI – SBIR, Commonwealth of Pennsylvania Department of Heath and Thrombolex Inc.

TCT

786

Disclosure Statement of Financial Interest

I, Riyaz Bashir MD have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.

Co-Inventor

Faculty disclosure information can be found on the app

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship	Company	
Grant/Research Support	Thrombolex Inc.	
Consulting Fees/Honoraria	Thrombolex Inc.	
Major Stock Shareholder/Equity	Thrombolex Inc.	
Royalty Income	Thrombolex Inc.	
Ownership/Founder	Thrombolex Inc.	
Intellectual Property Rights	Thrombolex Inc.	
Other Financial Benefit	Thrombolex Inc.	

Faculty disclosure information can be found on the app

<u>Circulation: Cardiovascular Interventions</u> *Or Cadovasc Inter*, 2021;13:e009611.D0I: 10.1161/CIRCINTERVENTIONS.120009611 January 2021 **DRIGINAL ARTICLE** First-in-Human Study to Assess the Safety and Feasibility of the Bashir Endovascular Catheter for the Treatment of Acute Intermediate-Risk

Pulmonary Embolism

First-in-Human study of Pharmaco-mechanical Catheter-Directed Thrombolysis (PM-CDT) with Bashir Endovascular Catheter has shown promising early results.

Study Objective

Assess safety and efficacy of Pharmaco-Mechanical Catheterdirected thrombolysis (PMCDT) using the Bashir Endovascular Catheter in patients with intermediate-risk acute pulmonary embolism.

• **Design**: Multicenter, prospective Single arm clinical trial

Pharmaco-Mechanical Catheter Directed Thrombolysis with Bashir Endovascular Catheter

CRF[™]

The Bashir Endovascular Catheter is not yet cleared for the treatment of Pulmonary Embolism

CRF

METHODS - Key Eligibility Criteria

- Inclusion Criteria
 - 1. 18 years to \leq 75 years of age;
 - 2. PE symptom duration \leq 14 days
 - 3. Filling defect in at least one main or lobar pulmonary artery
 - 4. RV/LV end diastolic diameter ratio ≥ 0.9
- Exclusion Criteria
 - 1. Active COVID 19 within last two months.
 - 2. CVA or TIA within one (1) year
 - 3. Head trauma, active intracranial or intraspinal disease
 - 4. Active bleeding
 - 5. Intracranial condition(s) that may increase the risk of bleeding

METHODS - Primary End-points

- Primary efficacy end-point:
 - Reduction in CTA derived RV/LV ratio at 48 hours from the baseline.
- Primary safety end-point:
 - Major bleeding and device related adverse events at 72 hours

METHODS

Secondary Efficacy End-point PA obstruction reduction at 48 hours

Refined Modified Miller Index as measured on CTA within 48 hours after the completion of the r-tPA infusion compared to baseline as evaluated by core lab.

METHODS Secondary Safety End-points

- Device related adverse events.
- All-cause mortality at 30-day follow-up.
- SAEs through 30-day follow-up.
- Recurrent PE through 30-day follow-up.

All end-points are adjudicated by the DSMB/CEC Committee

Rescue protocol

Unilateral PE – Total 7 mgs of rt-PA with Single device (2mgs pulse Spray and 5mgs over 5 hours) Bilateral PE – Total 14 mgs of rt-PA with two devices (2 mgs pulse Spray and 5 mgs infusion into each PA over 5 hours)

Pulmonary Angiogram Post PM-CDT

30-day follow-up

n= 106

SCRF'

TCT

Per protocol Analysis

N=104

Baseline Characteristics

CRF[™]

Pulmonary Embolism Characteristics

Characteristics (N=109)	N (%)
Unilateral Pulmonary Embolism Bilateral Pulmonary Embolism	7 (6.4%) 102 (93.6%)
Elevated Troponin or BNP	98/109 (89.9%)
Elevated Troponin	78/109 (66.1%)
Elevated BNP	78/105(74.3%)
Negative Biomarkers	69/109(8.3%)

90% patients had both elevated biomarkers as well as right ventricular dilatation

RESULTS: Procedural Characteristics

Characteristics (N=109)	
Total dose of rt-PA, mg Unilateral PE (Pulse spray + infusion) Bilateral PE (Pulse spray + infusion)	7 (2+5) 14 (4+10)
Total procedure time in minutes (Median \pm SD) Catheter placement time in minutes (Median \pm SD)	64.2±28.8 <mark>15</mark> ±14
No. of devices per patient 1 2	7 (6.4%) 103 (93.6%)
Completed r-tPA infusion (N=61)	109 (100%)

©CRF[®]

RESULTS

Primary Efficacy Outcome - RV/LV Ratio

33.3 % Reduction

SCRF[™]
TCT

℃RF^{*}

RESULTS: Primary Safety Outcomes

Outcomes	n (%)
Procedural Success (n=109)	109 (100%)
Major Bleeding within 72 hours (ISTH) (n=109)	1 (0.9%)
Major Device related adverse events (n=109)	1(0.9%)

℃RF^{*}

Pulmonary Artery Obstructive Index Reduction Refined Modified Miller Index (Core Lab.)

RESULTS : Secondary Outcomes

Outcomes	N (%)
Clinically Relevant Non-Major bleeding (n=109)	1 (0.92%)
Non major procedure related AE [‡] (n=109)	2 (1.8%)
Recurrent PE through 30-day follow-up (n=104)	0 (0%)
SAEs through 30-day follow up (n=104)	7 (6.7%)
All-cause mortality at 30 days (n=104)	1 (0.92%)
Intracranial Hemorrhage	0 (0%)
Median Hospital Length of stay in days ± SD (n=109)	2.88 ± 1.6

SCRF[™]
TCT

‡epistaxis, non-access site hematoma with anemia

Hemodynamics at 5 hours

Outcomes	Baseline mean ± SD	Post PM-CDT mean ± SD	Difference mean ± SD	p-value
Systolic PA pressure, mmHg (n=93)	$\textbf{49.53} \pm \textbf{13.39}$	$\textbf{43.74} \pm \textbf{13.51}$	5.94± 10.69	<0.0001
Cardiac output, L/min (n=98)	4.81 ± 1.43	5.31 ± 1.59	0.49± 1.59	0.0029
Cardiac index, L/min per m² (n=98)	$\textbf{2.29} \pm \textbf{0.60}$	$\textbf{2.47} \pm \textbf{0.71}$	0.19 ± 0.76	0.0156

DISCUSSION Thrombolytic Efficiency (Core Lab. Data)

The thrombolytic efficiency of one mg of r-tPA is higher with PM CDT

DISCUSSION

Reduction in Pulmonary Artery Obstruction parallels that seen with systemic thrombolysis

*Goldhaber, et al. Chest, vol. 106, no. 3, Sept. 1994

Contemporay Intermediate risk PE Trials

*Meyer G,. Fibrinolysis for patients with intermediate-risk pulmonary embolism. N Engl J Med 2014;370:1402-11.

Conclusion

The RESCUE trial showed that PMCDT with the Bashir Endovascular Catheter met its primary efficacy and safety endpoints and demonstrated:

- Reduction in RV/LV ratio by 33.3% at 48 hours (p<0.0001)
- Reduction in PA obstruction index by 35.9% at 48 hours (p<0.0001)
- There were fewer than 1% major bleeding or device related adverse events

Future perspective

- RCT to compare PM-CDT with:
 - Anticoagulation in Intermediate-risk PE patients
 - Systemic thrombolytics in high-risk PE patients.
- PE-TRACT and Hi PEITHO trials will inform us about longer term clinical and functional outcomes

RESCUE STUDY

Management team

- Steering Committee
 - Dr Akhilesh Sista (National Co-PI)
 - Dr Kenneth Rosenfield (National Co-PI)
 - Dr Anthony Comerota
- DSMB/CEC
 - Dr Gregory Piazza (Chairperson)
 - Dr Raghu Kolluri
 - Dr Robert Lookstein
 - Dr Melissa S. Martinson (Statistician)

Imaging Core lab

NAMSA/Syntactx Inc. New York NY

℃RF^{*}

Enrollment by sites

Clinical Research Organization

Eminence Inc.

Thank you

References

1. Piazza G, Hohlfelder B, Jaff MR et al. A Prospective, Single-Arm, Multicenter Trial of Ultrasound-Facilitated, Catheter-Directed, Low-Dose Fibrinolysis for Acute Massive and Submassive Pulmonary Embolism: The SEATTLE II Study. JACC Cardiovasc Interv 2015;8:1382-92.

2. Tapson VF, Sterling K, Jones N et al. A Randomized Trial of the Optimum Duration of Acoustic Pulse Thrombolysis Procedure in Acute Intermediate-Risk Pulmonary Embolism: The OPTALYSE PE Trial. JACC Cardiovasc Interv 2018;11:1401-1410. 3. Avgerinos ED, Jaber W, Lacomis J et al. Randomized Trial Comparing Standard Versus Ultrasound-Assisted Thrombolysis for Submassive Pulmonary Embolism: The SUNSET SPE Trial. JACC Cardiovasc Interv 2021;14:1364-1373.

4. Sista AK, Horowitz JM, Tapson VF et al. Indigo Aspiration System for Treatment of Pulmonary Embolism: Results of the EXTRACT-PE Trial. JACC Cardiovasc Interv 2021,14.319-329.

5. Tu T, Toma C, Tapson VF et al. A Prospective, Single-Arm, Multicenter Trial of Catheter-Directed Mechanical Thrombectomy for Intermediate-Risk Acute Pulmonary Embolism: The FLARE Study. JACC/Cardiovasc Interv 2019;12:859-869.

CRF'

Synergistic Effect Of Endogenous And Exogenous Fibrinolysis

Gurewich. J Am Coll Cardiol. 2016 Nov 8;68(19):2099-2106