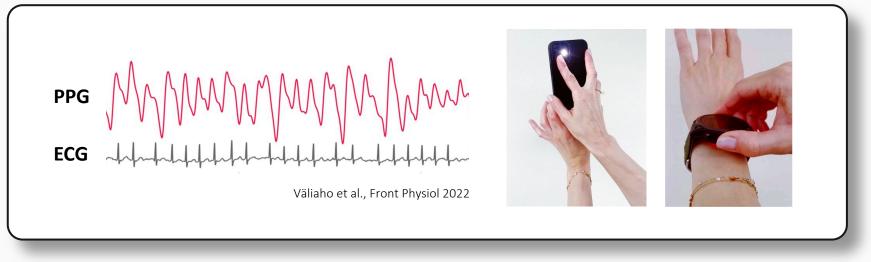
Smartphone-based screening for atrial fibrillation (eBRAVE-AF) – A pragmatic siteless digital randomized clinical trial

A Bauer, KD Rizas, L Freyer, N Sappler, L von Stülpnagel, P Spielbichler, A Krasniqi, M Schreinlechner, FN Wenner, F Theurl, A Behroz, E Eiffener, MP Klemm, A Schneidewind, M Zens, T Dolejsi, U Mansmann, S Massberg

Barcelona, 28th August 2022

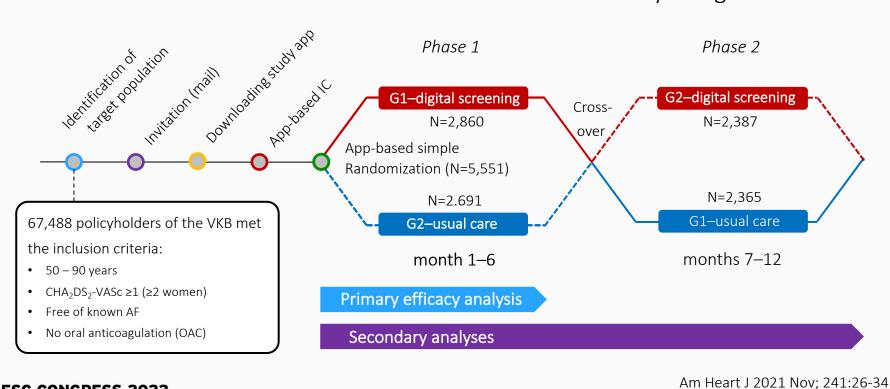


Background

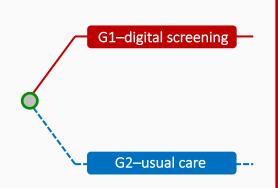
• Photoplethysmographic (PPG) sensors on smart devices can detect irregularities of pulse waves indicative of atrial fibrillation (AF)

Background

- Photoplethysmographic (PPG) sensors on smart devices can detect irregularities of pulse waves indicative of atrial fibrillation (AF)
- Consumer-oriented observational studies, e.g. the Apple¹, Huawei² and Fitbit Heart³ Studies, demonstrated than smart devices can identify individuals with AF
- However, these studies were not randomized, selected participants by ownerships of certain devices and treatment relevance of detected AF was unclear.


• To test the efficacy of a scalable digital screening strategy using ordinary smartphones for detection of treatment-relevant AF in an elderly at-risk population in head-to-head comparison with usual care

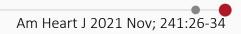
Study oversight


- Investigator-initiated, randomized, siteless, digital trial
- Remote recruitment from the pool of policyholders of the Versicherungskammer Bayern (VKB), a large German health insurance
- Communication through study app, no in-person contact with study participants
- Enrolment from February 4th, 2020, and July 31th, 2020
- Coordination by the Munich University Hospital
- Mainly funded by academic resources, partially funded by Pfizer GmbH, Germany, and Versicherungskammer Bayern (VKB)

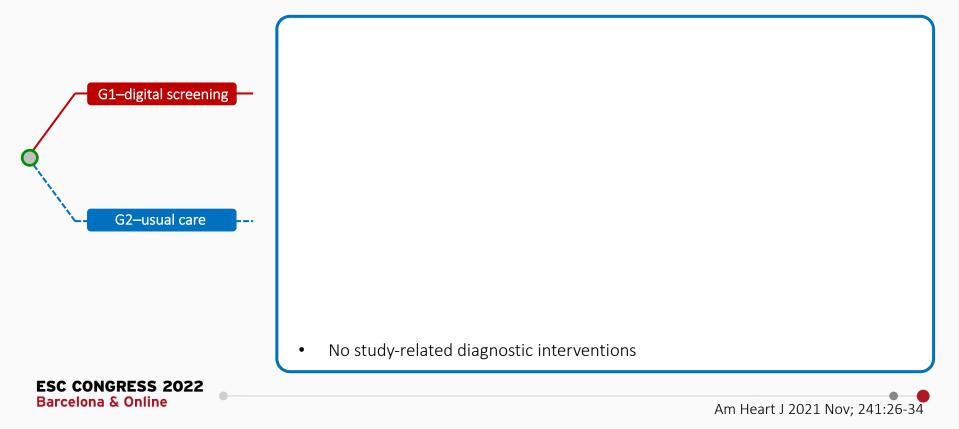
Study design & trial overview

ESC CONGRESS 2022 Barcelona & Online

Digital Saraboing


ESC CONGRESS 2022 Barcelona & Online

- Installation of the Preventicus Heartbeats app on own smartphone (Android / iOS)
- Repetitive 1-min PPG selfmeasurements by placing the index finger on the camera
- Twice daily for 14 days, then bi-weekly (scheduled 76 PPGs in 6 months)
- External 14-day ECG loop recorder for evaluation of abnormal PPG measurements
- Treatment decisions by local physicians



normal

Usual care

Endpoints and statistical analyses

• Primary endpoint (phase 1)¹

• Newly diagnosed AF² leading to initiation of oral anticoagulation by an independent physician not involved in the study

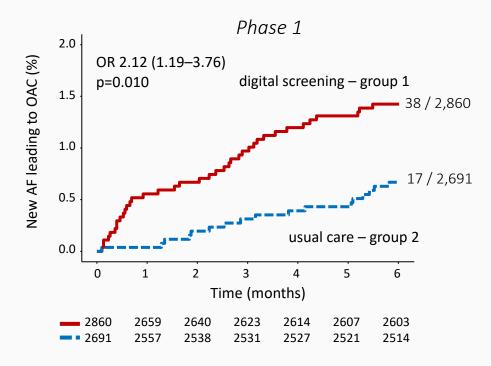
• Secondary endpoints (phase 1 & 2)

- Newly diagnosed AF²
- Newly prescribed oral anticoagulation
- Stroke & thromboembolic events
- Major bleedings (BARC ≥2)
- All analyses done on an intention-to-treat principle


¹verified by independent endpoint adjucation committee

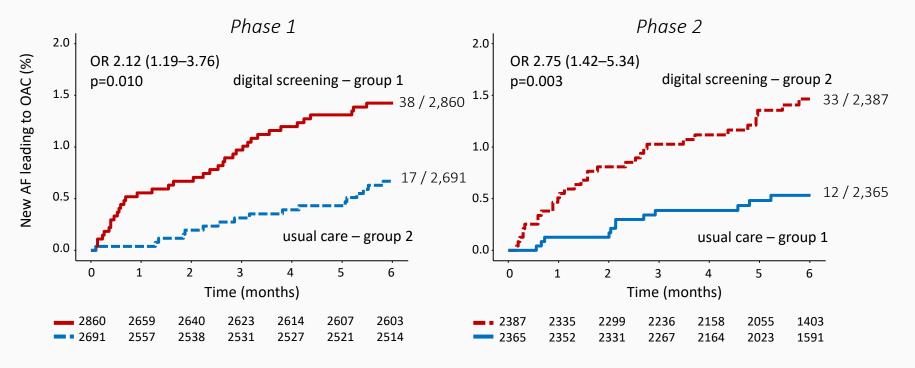
²≥30 sec AF on ECG loop recorder *or* clinical diagnosis by treating physician

- Follow-up information from following sources
 - 1. Questionnaires through the study app
 - Telephone calls (if final questionnaires after phase 1 and 2 were not answered)
 - 3. Insurance claims data (ICD-10 and ATC codes)
 - 4. Medical reports for all potentially endpoint-relevant events



- (

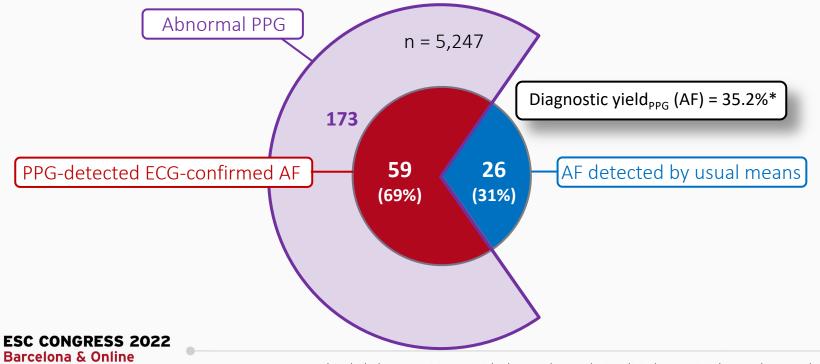
Characteristics of study participants


	Group 1	Group 2
	(N=2,860)	(N=2,691)
Age (years)	65 (60 - 71)	66 (60 - 71)
Females (%)	31%	31%
CHA ₂ DS ₂ -VASc	3 (2 - 3)	3 (2 - 3)
Coronary heart disease	15%	14%
Heart failure	4%	4%
History of stroke	6%	6%
Diabetes mellitus	14%	12%
ACE inhibitor or ARB	13%	13%
Beta-blocker	3%	3%
Aspirin	1%	1%
Statins	2%	2%

Primary efficacy analysis

ESC CONGRESS 2022 Barcelona & Online

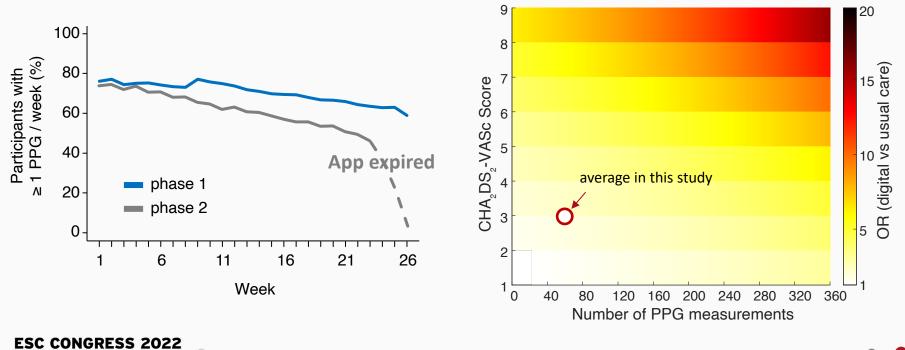
Cross-over phase


ESC CONGRESS 2022 Barcelona & Online

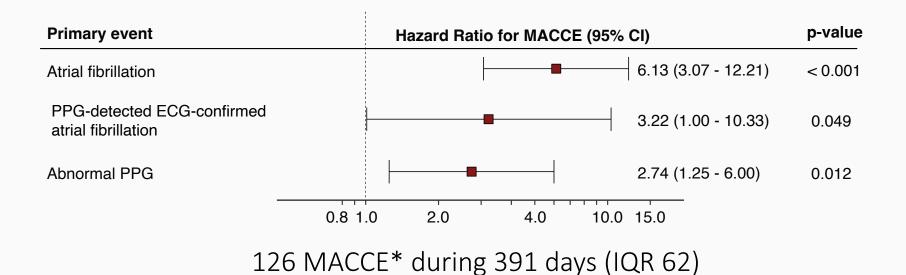
Secondary endpoints

	Phase 1			Phase 2				
	Group 1 (N=2,860) (digital)	Group 2 (N=2,691) (usual)	OR (95% CI) (digital vs usal)	P-value	Group 1 (N=2,365) (usual)	Group 2 (N=2,387) (digital)	OR (95% CI) (digital vs usual)	P-value
New AF	48 (1.7%)	24 (0.9%)	1.9 (1.16–3.11)	0.011	16 (0.7%)	37 (1.6%)	2.3 (1.3–4.2)	0.005
New OAC	49 (1.7%)	23 (0.9%)	2.0 (1.23 - 3.33)	0.006	23 (1.0%)	45 (1.9%)	2.0 (1.2-3.2)	0.010
Stroke	12 (0.4%)	11 (0.4%)	1.0 (0.5 – 2.35)	0.950	11 (0.5%)	7 (0.3%)	0.6 (0.3-1.7)	0.348
Thromboembolic events	11 (0.4%)	5 (0.2%)	2.1 (0.7–6.0)	0.177	9 (0.4%)	11 (0.5%)	1.2 (0.5-3.0)	0.661
Major bleeding	15 (0.5%)	14 (0.5%)	1.0 (0.5–2.1)	0.983	6 (0.3%)	12 (0.5%)	2.0 (0.8-5.3)	0.166

AF atrial fibrillation; OAC oral anticoagulation


Modes of AF detection during *digital* screening (pooled analysis)

* included two participants with abnormal PPGs during digital screening, but AF diagnosed after cross-over


ebrave-<u>AF</u>

Compliance with and efficacy of digital screening

Barcelona & Online

Association with MACCE*

*Cardiovascular mortality, hospitalizations due to heart failure or myocardial infarction, thrombosis, pulmonary embolism, stroke and thromboembolic events

- Findings of our study might not be representative for other healthcare systems
- Enrolment of participants could be subject to selection bias
- Continuous passive screening with wrist-worn devices likely provides a better sensitivity for AF detection
- Increased awareness of AF due to study participation may have favoured usual care

- A scalable digital screening strategy using ordinary smartphones provides a substantial benefit to usual care in detecting treatment-relevant AF
- The findings of our study are most likely generalizable to other smart device-based PPG technologies
- Digitally detected ECG-confirmed AF as well as abnormal PPG measurements *per se* represent prognostically relevant digital biomarkers
- Future studies are needed to test whether improved AF diagnostics through digital technologies translate into better treatment outcomes

ESC CONGRESS 2022 Barcelona & Online

Thanks to all eBRAVE-AF investigators, the Versicherungskammer Bayern (VKB) and Preventicus GmbH

Smartphone-based screening for atrial fibrillation: a pragmatic randomized clinical trial

Konstantinos D. Rizas ^{1,2,6}, Luisa Freyer^{1,2,6}, Nikolay Sappler^{3,6}, Lukas von Stülpnagel ^{1,2,3}, Peter Spielbichler^{1,2}, Aresa Krasniqi^{1,2}, Michael Schreinlechner³, Felix N. Wenner^{1,2}, Fabian Theurl ³, Amira Behroz^{1,2}, Elodie Eiffener ^{1,2}, Mathias P. Klemm^{1,2}, Annika Schneidewind^{1,2}, Martin Zens⁴, Theresa Dolejsi³, Ulrich Mansmann ⁵, Steffen Massberg ^{1,2} and Axel Bauer ^{1,2,3}

medicine

nature.

ARTICLES https://doi.org/10.1038/s41591-022-01979-w

L. Freyer

N Sappler

L v Stuelpnagel