The DEFINE-FLOW study
combined CFR and FFR assessment

Dr. Nils Johnson
on behalf of the DEFINE-FLOW investigators

Associate Professor of Medicine
Weatherhead Distinguished Chair of Heart Disease
Division of Cardiology, Department of Medicine
and the Weatherhead PET Imaging Center
McGovern Medical School at UTHealth
(Houston)
Memorial Hermann Hospital – Texas Medical Center
United States of America
Disclosure Statement of Financial Interest

Within the past 12+ months, Nils Johnson has had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/research support (to institution)
- Licensing and associated consulting (to institution)
- Support for educational meetings/training (honoraria/fees donated to institution)
- PET software 510(k) from FDA (application by Lance Gould, to institution)
- Patents filed (USPTO serial numbers 62/597,134 and 62/907,174)

Organizations (alphabetical)

- St Jude Medical (for CONTRAST study)
- Volcano/Philips (for DEFINE-FLOW study)
- Boston Scientific (for smart-minimum FFR algorithm)
- Various, including academic and industry
 - K113754 (cfrQuant, 2011)
 - K143664 (HeartSee, 2014)
 - K171303 (HeartSee update, 2017)
- SAVI and ΔP/Q methods
- Correction of fluid-filled catheter signal
How to treat CFR/FFR discordance?

57 year-old man with diabetes and CCS class I angina

Subject FLOW196 from DEFINE-FLOW (clinicaltrials.gov NCT02328820)
Vessels with
- abnormal $\text{FFR} \leq 0.8$ but intact $\text{CFR} \geq 2$
- will show non-inferior outcomes
- versus $\text{FFR} > 0.8$ and $\text{CFR} \geq 2$
- when treated medically.

Primary endpoint:
- composite of all-cause death, MI, PCI/CABG
- assessed after 2 years
- central adjudication by events committee
- non-inferiority margin of 10%
Treatment protocol

measure FFR and CFR

- FFR > 0.8: defer PCI
 (CFR adds value?)
- FFR ≤ 0.8:
 - CFR ≥ 2: defer PCI!
 (key difference)
 - CFR < 2: perform PCI
Study flow diagram

Enrolled
455 subjects
669 lesions
1729 measurements

Excluded
25 subjects
136 lesions
478 measurements

Protocol-treated and followed
430 subjects
533 lesions
1251 measurements

- **FFR > 0.8, CFR ≥ 2.0**
 - **Medical therapy**
 - 207 subjects
 - 236 lesions
 - FFR 0.88 (IQR 0.84-0.93)
 - CFR 2.5 (IQR 2.2-2.9)

- **FFR > 0.8, CFR < 2.0**
 - **Medical therapy**
 - 108 subjects
 - 123 lesions
 - FFR 0.89 (IQR 0.85-0.93)
 - CFR 1.7 (IQR 1.5-1.9)

- **FFR ≤ 0.8, CFR ≥ 2.0**
 - **Medical therapy**
 - 74 subjects
 - 74 lesions
 - FFR 0.75 (IQR 0.72-0.78)
 - CFR 2.6 (IQR 2.3-2.9)

- **FFR ≤ 0.8, CFR < 2.0**
 - **Revascularized by PCI**
 - 94 subjects
 - 100 lesions
 - FFR 0.70 (IQR 0.60-0.75)
 - CFR 1.4 (IQR 1.2-1.7)
Baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>N = 430 subjects</th>
<th>N = 533 lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>67 ± 10</td>
<td>LAD 59%</td>
</tr>
<tr>
<td>Male</td>
<td>74%</td>
<td>LCx 23%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>27%</td>
<td>RCA 18%</td>
</tr>
<tr>
<td>Active tobacco</td>
<td>22%</td>
<td>Prior PCI of vessel 14%</td>
</tr>
<tr>
<td>Prior MI</td>
<td>27%</td>
<td>FFR ≤0.80 33%</td>
</tr>
<tr>
<td>Prior PCI</td>
<td>40%</td>
<td>CFR < 2.0 42%</td>
</tr>
<tr>
<td>Stable presentation</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>Aspirin</td>
<td>89%</td>
<td></td>
</tr>
<tr>
<td>Statin</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>≥2 anti-anginals</td>
<td>50%</td>
<td></td>
</tr>
</tbody>
</table>

* = includes beta blockers, calcium blockers, nitrates, ranolazine, ivabradine, trimetazidine, and nicorandil.
CFR/FFR discordance

Quadrants by binary FFR and CFR
- FFR > 0.8, CFR ≥ 2.0 (44% of lesions)
- FFR > 0.8, CFR < 2.0 (23% of lesions)
- FFR ≤ 0.8, CFR ≥ 2.0 (14% of lesions)
- FFR ≤ 0.8, CFR < 2.0 (19% of lesions)
Primary endpoint

2-year MACE (death, MI, any PCI/CABG) (from Kaplan-Meier estimates, using site-reported FFR and CFR)

- FFR-/CFR- = 5.8%
- FFR+/CFR- = 10.8%
- FFR-/CFR+ = 12.4%
- FFR+/CFR+ = 14.4% (after PCI)

FFR+/CFR- vs FFR-/CFR-

- $\Delta = +5.0\%$ (95%CI -1.5% to +11.5%)
- p-value 0.065 for non-inferiority

natural history NOT non-inferior for FFR+/CFR- and FFR-/CFR-
Secondary data: Target Vessel Failure

2-year TVF (MI or PCI/CABG of target) (from Kaplan-Meier estimates, using site-reported FFR and CFR)
- FFR-/CFR- = 3.0%
- FFR+/CFR- = 9.6%
- FFR-/CFR+ = 6.7%
- FFR+/CFR+ = 6.1% (after PCI)

Continuous predictors
- natural history (no FFR+/CFR+)
- 351 subjects, 433 lesions
- time-to-failure Cox mixed effects
- FFR hazard ratio <0.01, p=0.0067
- CFR hazard ratio 0.74, p=0.44
Secondary data: core lab

Measurements

- 69.8% of measurements accepted
- Δ FFR = 0.008 ± 0.026 (site<core lab)
- Δ CFR = 0.02 ± 0.23 (site>core lab)
 → core lab reduces sample size by 30%
 → but no change in FFR, CFR

TVF using continuous FFR, CFR

- natural history (no FFR+/CFR+)
- 286 subjects, 337 lesions
- time-to-failure Cox mixed effects
- FFR hazard ratio <0.01, p=0.038
- CFR hazard ratio 0.78, p=0.64
 → core lab analysis supports site analysis
Limitations

- Lack of randomization excludes causality
 (no comparison arm for FFR+/CFR- quadrant)
- Modest sample size with slow enrollment
 (took 3 years to enroll 455 subjects from 12 centers)
- Modest event rate with few “hard” endpoints
 (only 2 deaths [both non-cardiac], 5 infarcts)
- Unblinded subjects and physicians
 (might have biased the 32 TVR/TLR)
- Few lesions with severe FFR/CFR
 (FFR<0.75 in 20%, CFR≤1.7 in 27 %)
- Therefore, a hypothesis-generating study
Primary conclusion

Natural history of $\text{FFR} \leq 0.8 / \text{CFR} \geq 2$

is NOT non-inferior

to lesions with $\text{FFR} > 0.8 / \text{CFR} \geq 2$