Acute Hemodynamic Improvement
With Percutaneous Mechanical
Thrombectomy in a Real-World
Pulmonary Embolism Population:
Interim Results of the FLASH Registry

Catalin Toma, MD
University of Pittsburgh Medical Center

Disclosure Statement of Financial Interest

I, Catalin Toma DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.

Faculty disclosure information can be found on the app

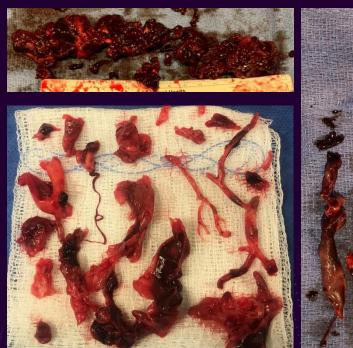
Unmet Needs in Pulmonary Embolism

- High acute mortality
 - Up to 40% mortality for high-risk PE and 15% for intermediate-risk PE at 90 days¹
- Advanced treatment options previously reliant on thrombolytics
 - Major bleeding rates across large studies converge at ~10% and 2% for ICH^{2,3}
- Optimal treatment solution for at risk patients would be:
 - Safe from a procedural and bleeding risk standpoint
 - Effective with an immediate improvement in hemodynamics which can be crucial to interrupt the PE death spiral, especially in patients with signs of cardiac shock⁴

^{1.} Secemsky et al., Contemporary Management and Outcomes of Patients with Massive and Submassive Pulmonary Embolism, The American Journal of Medicine. 2018:131(12): P1506-1514.

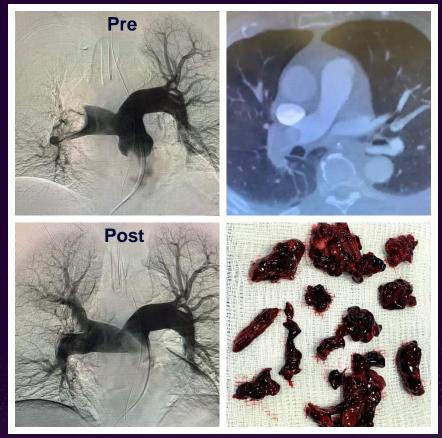
^{2.} Chatterjee et al. Thrombolysis for Pulmonary Embolism and Risk of All-Cause Mortality, Major Bleeding, and Intracranial Hemorrhage: A Meta-analysis, JAMA. 2014; 311(23): 2414-2421.

^{3.} Giri et. al, Interventional Therapies for Acute Pulmonary Embolism: Current Status and Principles for the Development of Novel Evidence: A Scientific Statement From the American Heart Association. Circulation. 2019;140:e774–e80


^{4.} Toma et al., Percutaneous thrombectomy in patients with massive and very high-risk submassive acute pulmonary embolism. Catheter Cardiovasc Interv. 2020; 1–6

FlowTriever System

Purpose-built PE thrombectomy system designed to rapidly extract thrombus for on-table hemodynamic restoration without the need for tPA


FDA cleared for pulmonary embolism on May 21, 2018 based on FLARE IDE Study Results: Tu et al., A Prospective, Single-Arm, Multicenter Trial of Catheter-Directed Mechanical Thrombectomy for Intermediate-Risk Acute Pulmonary Embolism J Am Coll Cardiol Intv. 2019 May, 12 (9) 859-869.

Thrombus images from It's Alive! The Evolution of Thrombus and Why Fast, Effective Removal Is Key, Inari sponsored EVT article, April 2020.

FlowTriever Case Example

Images courtesy of Dr. Igor Latich (Yale School of Medicine)

FLASH Registry

Design	Goal	Enrollment
Prospective Multicenter Registry	Evaluate the safety and effectiveness of the FlowTriever System for treatment of PE in a real-world patient population	Up to 500 intermediate- and high- risk PE patients at up to 50 sites

- Primary endpoint: MAE composite through 48h
 - Device-related mortality
 - Major bleeding
 - Intraprocedural device or procedure-related AEs, including clinical deterioration and device-related pulmonary vascular or cardiac injuries
- <u>Secondary endpoints</u>: impact on acute hemodynamics, procedural measures, 48h all-cause mortality, and longer-term patient outcomes

Timeline	Variables
Baseline	Detailed medical history
On-table	Invasive hemodynamics, procedural data
Through 48 hours	MAE, Non-MAE bleeding, laboratory markers
Discharge	Hospital and ICU stays
Out to 6 months	Vitals, anticoagulation, AE, readmissions, QoL, 6MWT, PE relevant symptoms (e.g., dyspnea)

FLASH Registry – Baseline Characteristics

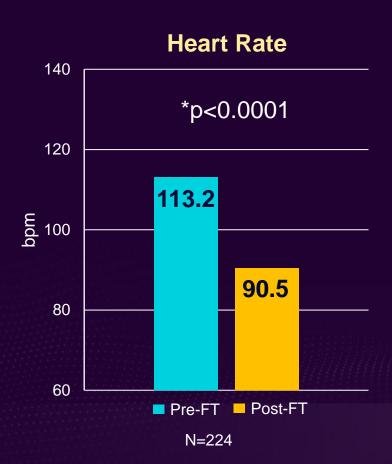
230 patients enrolled at 19 US sites

Characteristic	n (%) or mean ± SD
Age (Years)	60.7 ± 13.9
Male Sex	120 (52.2%)
History of DVT	51 (22.2%)
History of PE	31 (13.5%)
History of PHTN	32 (14.0%)
Concomitant DVT	159 (69.7%)
Active Bleed	6 (2.6%)
History of Cancer	55 (23.9%)
Active Cancer	19 (8.3%)
Lytics Contraindication	88 (38.3%)

Characteristic	n (%) or mean ± SD
Intermediate-risk (Submassive)	212 (93.0%)
High-risk (Massive)	16 (7.0%)
sPESI	1.6 ± 1.1
Positive Biomarker(s)*	211 (96.3%)
RV/LV (CT or Echo)	1.6 ± 0.5
Saddle PE	90 (39.1%)
Unilateral PE	28 (12.2%)
Bilateral PE *troponin and/or BNP	112 (48.7%)

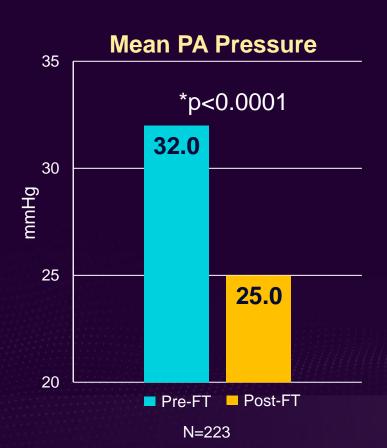
FLASH – Procedural Data

Characteristic	n (%) or median [IQR]
Access Site	Femoral: 226 (98.7%) Jugular: 3 (1.3%)
Access Site Complications	1 (0.4%)
FlowTriever Device Time (min)	46.0 [26.0 - 71.5]
Estimated Blood Loss (mL)	250 [100 - 400]
Adjunctive Therapy	11 (4.8%)
Hospital Length of Stay (days post-procedure)	3.0 [2.0 - 5.1]
ICU Length of Stay (days post-procedure)	0.0 [0.0 - 1.1]

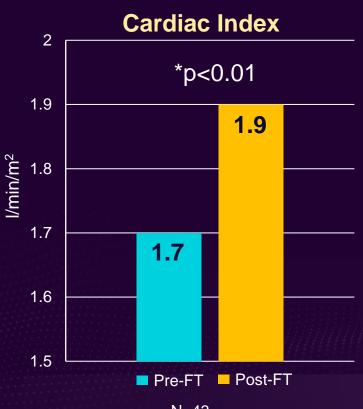

FLASH Registry – Safety

Mortality through 48 hours: 0/230 (0%)

Primary Endpoint 48h MAE: 3/230 (1.3%)

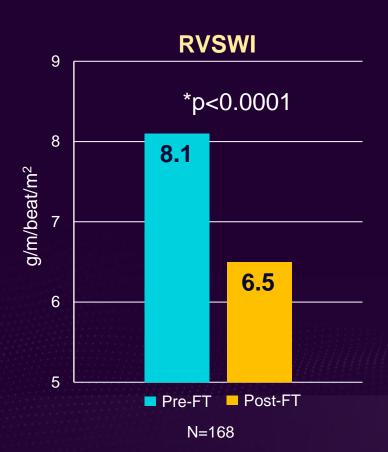

- 0 device-related deaths
- 3 major bleeds (non-ICH)
- 0 intraprocedural device or procedure-related AEs
 - 0 clinical deteriorations
 - 0 device-related pulmonary vascular injuries
 - 0 device-related cardiac injuries

FLASH Registry – Heart Rate

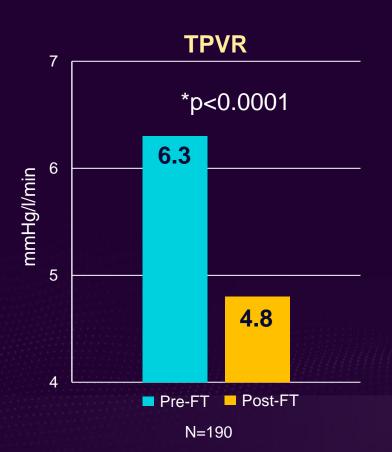


Heart rate improved on average 22.7 bpm (20.1%) from a pre-procedural high of 113.2±16.8 bpm to 90.5±16.5 bpm

77.0% of patients were tachycardic (>100 bpm) pre-procedure compared to 24.6% immediately post-procedure (p<0.0001)



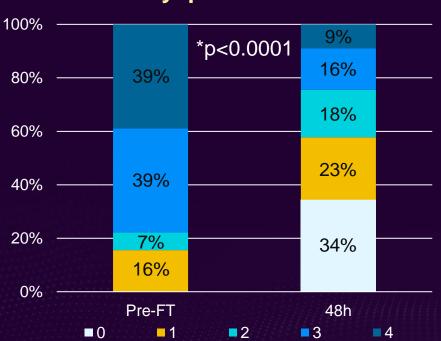
On-table mean PA pressure dropped on average 7.0 mmHg (21.9%) from 32.0±8.2 mmHg to 25.0±8.2 mmHg



23.5% of patients had a low baseline cardiac index < 2.0 l/min/m²

These patients had an average on-table CI improvement of 0.2 l/min/m² (11.8%) from 1.7±0.2 l/min/m² to 1.9±0.4 l/min/m²

Right ventricular stroke work index decreased on average 1.6 g/m/beat/m² (19.8%) from 8.1±4.0 g/m/beat/m² to 6.5±4.4 g/m/beat/m²



Total pulmonary vascular resistance improved on average 1.5 mmHg/l/min (23.8%) from 6.3±2.8 mmHg/l/min to 4.8±2.1 mmHg/l/min

FLASH Registry – 48 Hours

Dyspnea Scores

Dyspnea scores using the mMRC scale (0-4 points) decreased on average 1.6 points from 3.0 to 1.4

FLASH Registry - Conclusions

- Interim results reinforce excellent FlowTriever safety in 230 real-world PE patients
 - No deaths at 48h, 1.3% 48h MAE rate, and only 1 access site complication
- Patients experienced significant on-table hemodynamic improvement compared to baseline
 - Mean PAP decrease: 7.0 mmHg; HR decrease: 22.7 bpm
- Dyspnea scores improved significantly at 48 hours
- Device time was short (median of 46 min) and most patients did not require an ICU stay post-procedure (median of 0 days)
- Further data will help design definitive studies in PE

Acknowledgements

Principal Investigators	Sites
Principal Investigators	Sites
Catalin Toma, M.D. (national FLASH PI)	University of Pittsburgh Medical Center
Kenneth Cho, M.D. / Matthew Bunte, M.D.	Saint Luke's Health System
Jeffrey Chambers, M.D.	Metropolitan Heart & Vascular Institute
Wissam Jaber, M.D.	Emory University
Jeffrey Pollak, M.D.	Yale University
Brian Stegman, M.D.	CentraCare Heart & Vascular Center
Sreedevi Gondi, M.D.	Baptist Health Louisville
Daniel Leung, M.D	Christiana Care Health Services
Michael Savin, M.D.	Beaumont Health
Sameer Khandhar, M.D.	University of Pennsylvania
Herman Kado, M.D.	Ascension Providence Hospital
Mitchell Weinberg, M.D.	Northwell Health
Gerald Koenig, M.D./Ph.D.	Henry Ford Health Systems
Michael Sarosi, M.D.	Michigan Heart
Jon Roberts , M.D. / Wes Angel, M.D.	Methodist Healthcare Foundation
Osama Qaqi, M.D.	Ascension Providence Rochester Hospital
Kalyan Veerina, M.D.	Opelousas General