

Efficacy and Safety of Mavacamten in Adults with Symptomatic Obstructive Hypertrophic Cardiomyopathy: Results of the EXPLORER-HCM Study

Iacopo Olivotto, MD

Azienda Ospedaliera Universitaria Careggi and the University of Florence, Italy

On behalf of the EXPLORER-HCM investigators

Declaration of Interest

Presenting author:

- Grant/research support: Sanofi-Genzyme, Shire, Amicus, Bayer, MyoKardia
- Honoraria: Sanofi-Genzyme, Shire, Bayer
- Consultant: MyoKardia

This study was funded by MyoKardia, Inc.

Introduction

- Hypertrophic cardiomyopathy (HCM) is a myocardial disorder characterized by primary left ventricular (LV) hypertrophy
- Symptoms are often related to dynamic outflow obstruction
- Current medical management for obstructive HCM includes beta-blockers, non-dihydropyridine calcium channel blockers, or disopyramide¹⁻²

Developing effective pharmacological therapy for obstructive HCM is an important unmet need

Mavacamten: Mechanism of Action

Mavacamten is a first-in-class, targeted inhibitor of cardiac myosin

→ It reduces the number of myosin-actin cross-bridges and thus decreases excessive contractility characteristic of HCM

EXPLORER-HCM Study Design

Pivotal Phase 3, Multicenter, Randomized, Double-blind, Placebo-controlled Trial in Patients With Obstructive HCM¹

Patients with LVOT gradient ≥50 mmHg and New York Heart Association (NYHA) class II-III symptoms were randomized 1:1 to receive once-daily oral mavacamten (starting dose of 5 mg with a 2-step dose titration) or placebo for 30 weeks

EXPLORER-HCM Endpoints

Primary composite functional endpoint

Change f	rom baseline to Week 30	pVO ₂		NYHA Classification
EITHER	Composite 1	≥1.5 mL/kg/min	and	Reduction of ≥1 class
OR	Composite 2	≥3.0 mL/kg/min	and	No worsening

Secondary endpoints included change from baseline to Week 30 in:

- Post-exercise LVOT gradient
- pVO₂
- Proportion of patients with ≥1 NYHA class improvement
- Kansas City Cardiomyopathy Questionnaire-Clinical Summary Score (KCCQ-CSS)
- HCM Symptom Questionnaire Shortness-of-Breath (HCMSQ-SoB) subscore

Baseline Demographics and Patient Characteristics

Characteristic	Mavacamten (N = 123)	Placebo (N = 128)
Age, years, mean ± SD	58.5 ± 12.2	58.5 ± 11.8
Female sex, n (%)	57 (46.3)	45 (35.2)
Background HCM therapy, n (%) Beta-blocker Calcium channel blocker	94 (76.4) 25 (20.3)	95 (74.2) 17 (13.3)
NYHA functional class, n (%) II III	88 (71.5) 35 (28.5)	95 (74.2) 33 (25.8)
History of atrial fibrillation, n (%)	12 (9.8)	23 (18.0)
pVO _{2,} ml/kg/min, mean ± SD	18.9 ± 4.9	19.9 ± 4.9
NT-proBNP, geometric mean (CV%), ng/L*	777 (136)	616 (108)
HCM genetic testing performed, n (%)	90 (73.2)	100 (78.1)
Pathogenic/likely pathogenic HCM gene variant — n/N tested (%)	28/90 (31.1)	22/100 (22.0)

ESC Congress 2020 The Digital Experience

*NT-proBNP: mavacamten, n = 120; placebo, n = 126.

HCM, hypertrophic cardiomyopathy; NYHA, New York Heart Association; NT-proBNP, N-terminal pro b-type natriuretic peptide; pVO₂, peak oxygen consumption.

SEXPLORER-HCM

Baseline Echo Parameters

Echocardiographic parameters, mean ± SD	Mavacamten (N = 123)	Placebo (N = 128)	
LVEF, %	74 ± 6	74 ± 6	
Maximum LV wall thickness, mm	20 ± 4	20 ± 3	
LVOT gradient resting, mm Hg	52 ± 29	51 ± 32	
LVOT gradient Valsalva, mm Hg	72 ± 32	74 ± 32	
LVOT gradient post-exercise, mm Hg*	86 ± 34	84 ± 36	
LA volume index, mL/m ² ‡	40 ± 12	41 ± 14	

*Post-exercise LVOT: mavacamten, n = 122; placebo, n = 127. ‡LA volume index: mavacamten, n = 123; placebo = 128. LA, left atrial; LV, left ventricular; LVOT, left ventricular outflow tract

Primary Endpoint

	Mavacamten (N = 123) n (%)	Placebo (N = 128) n (%)	Difference (95% CI) P value
EITHER ≥1.5 ml/kg/min increase in pVO ₂ with ≥1 NYHA class improvement OR ≥3.0 ml/kg/min increase in pVO ₂ with no worsening of NYHA class	45 (36.6)	22 (17.2)	19.4 (8.7, 30.1) 0.0005
<u>BOTH</u> ≥3.0 ml/kg/min increase in pVO ₂ AND ≥1 NYHA class improvement	25 (20.3)	10 (7.8)	12.5 (4.0 <i>,</i> 21.0) 0.0005*

*P value not alpha-controlled

NYHA, New York Heart Association; pVO₂, peak oxygen consumption.

Secondary Endpoints

	Mavacamten	Placebo	Difference* (95% CI) P value
Post-exercise LVOT gradient, n ⁺	117	122	
Change from baseline to week 30, mmHg, mean ± SD	-47 ± 40	-10 ± 30	-36 (-43.2, -28.1) <0.0001
pVO ₂ , n†	120	125	
Change from baseline to week 30, ml/kg/min, mean ± SD	1.40 ± 3.1	-0.05 ± 3.0	1.35 (0.58, 2.12) 0.0006
≥1 NYHA class improvement, n ⁺	123	128	
Improvement from baseline to week 30, n (%)	80 (65.0)	40 (31.3)	34 (22.2, 45.4) <0.0001
KCCQ-CSS, n ⁺ (positive better)	92	88	
Change from baseline to week 30, mean ± SD	13.6 ± 14.4	4.2 ± 13.7	9.1 (5.5, 12.7) <0.0001
HCMSQ-SoB, n ⁺ (negative better)	85	86	
Change from baseline to week 30, mean ± SD	-2.8 ± 2.7	-0.9 ± 2.4	-1.8 (-2.4 to -1.2) <0.0001

ESC Congress 2020 The Digital Experience

*Model estimated least-square mean differences were reported for continuous variables.

⁺N = number analyzable for secondary end point based on N availability of both baseline and week 30 values.

HCM Symptom Questionnaire Shortness-of-Breath (HCMSQ-SoB) subscore; Kansas City Cardiomyopathy Questionnaire-Clinical Summary Score (KCCQ-CSS); LVOT, left ventricular outflow tract; NYHA, New York Heart Association; pVO₂, peak oxygen consumption.

LVOT Gradients and LVEF Over Time

ESC Congress 2020 The Digital Experience

The dashed lines represent the threshold for guideline-based invasive intervention (post-exercise and Valsalva LVOT gradient >50 mm Hg), the threshold for guideline-based diagnosis of obstruction (resting LVOT gradient <30 mm Hg), or the protocol threshold for temporary discontinuation (LVEF <50%).

LVEF, left ventricular ejection fraction; LVOT, left ventricular outflow tract.

Treatment Effect on Post-Exercise LVOT Gradient by Subgroup

Subgroup	Mean difference, mm Hg (95% CI)	Mavacamten N (mean)	Placebo N (mean)	Difference, mm Hg (95% Cl)
Age, years ≤49 50-64 ≥65		26 (-37.0) 48 (-57.1) 43 (-42.5)	23 (–12.2) 61 (–12.2) 38 (–6.5)	-24.8 (-41.4, -8.1) -44.9 (-59.2, -30.6) -36.0 (-51.5, -20.5)
Sex Female Male		54 (-47.9) 63 (-46.7)	43 (–5.5) 79 (–13.1)	-42.4 (-57.7, -27.1) -33.6 (-44.8, -22.4)
BMI, kg/m² <30 ≥30		72 (–47.5) 45 (–46.9)	74 (–9.9) 48 (–11.3)	–37.6 (–48.7, –26.5) –35.6 (–51.1, –20.1)
LVEF at baseline, % <75 ≥75		66 (–52.8) 51 (–40.1)	64 (–7.6) 58 (–13.6)	–45.2 (–58.0, –32.5) –26.5 (–39.0, –14.0)
NYHA class at baseline Class II Class III		82 (–48.7) 35 (–43.9)	90 (–10.3) 32 (–10.9)	–38.4 (–49.1, –27.7) –33.0 (–50.1, –15.9)
Beta-blocker usage at baseline Yes No		89 (–47.1) 28 (–47.9)	92 (–9.1) 30 (–14.4)	–37.9 (–48.0, –27.9) –33.5 (–53.6, –13.3)
Type of exercise testing Bicycle Treadmill		51 (–48.2) 66 (–46.5)	57 (–11.4) 65 (–9.6)	-36.9 (-49.8, -23.9) -36.9 (-49.5, -24.2)
NT-proBNP at baseline, ng/L ≤Median >Median		53 (–48.8) 61 (–45.7)	64 (–10.0) 56 (–11.6)	-38.8 (-51.9, -25.6) -34.1 (-47.1, -21.1)
HCM genetic testing result Pathogenic or likely pathogenic VUS Negative		25 (–49.8) 32 (–49.5) 28 (–38.9)	21 (–10.5) 40 (–12.7) 34 (–7.9)	–39.4 (–60.6, –18.1) –36.8 (–51.8, –21.9) –31.0 (–48.8, –13.2)
Congress 2020) –60 –40 –20 0 Favors mavacamten Fav	20 ors placebo		

HCM, hypertrophic cardiomyopathy; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association; NT-proBNP, N-terminal pro b-type natriuretic peptide; VUS, variant of uncertain significance.

Key Exploratory Efficacy Endpoints

	Mavacamten	Placebo	Difference (95% CI) P value*
Post-exercise LVOT peak gradient <50 mm Hg, n/N (%) †	75/101 (74.3)	22/106 (20.8)	53.5 (42.0, 65.0) <0.0001
Post-exercise LVOT peak gradient <30 mm Hg, n/N (%) ‡	64/113 (56.6)	8/114 (7.0)	49.6 (39.3, 59.9) <0.0001
Complete response, n/N (%) Defined as NYHA class I and all LVOT gradients <30 mm Hg	32/117 (27.4)	1/126 (0.8)	26.6 (18.3, 34.8) <0.0001

*P values not alpha controlled

ESC Congress 2020 The Digital Experience

[†]Threshold for guideline-based invasive intervention. Only patients with baseline post-exercise LVOT peak gradient ≥50 mm Hg were assessed.
 [‡]Threshold for guideline-based diagnosis of obstruction. Only patients with baseline post-exercise LVOT peak gradient ≥30 mm Hg were assessed.
 LVOT, left ventricular outflow tract; NYHA, New York Heart Association.

Exploratory Endpoints: Cardiac Biomarkers

ESC Congress 2020 The Digital Experience

Summary of Safety through Week 30 (Treatment Period)

Adverse events Preferred term	Mavacamten (N = 123)	Placebo (N = 128)	
Patients with ≥1 TEAEs, n (%)	108 (87.8)	101 (78.9)	
Total number of SAEs	11	20	
Patients with ≥1 SAE, n (%)	10 (8.1)	11 (8.6)	
Atrial fibrillation	2 (1.6)	4 (3.1)	
Syncope	2 (1.6)	1 (0.8)	
Stress cardiomyopathy	2 (1.6)	0	
Cardiac failure congestive	0	1 (0.8)	
Sudden death	0	1 (0.8)	

- There was a <u>97% completion rate</u> through 30 weeks of treatment
- <u>3 patients discontinued due to AEs</u>:
 2 on mavacamten, 1 on placebo
 - No patients withdrew due to reduced LVEF or symptoms of heart failure

Protocol-Driven Temporary Discontinuations

- Temporary discontinuation for LVEF <50% occurred in 5 patients in the treatment period (3 on mavacamten, 2 on placebo)
- 4 additional patients on mavacamten had LVEF <50% at week 30 (end-of-treatment)
 - LVEF recovered to baseline in 3 patients by the end of the 8-week washout
 - The fourth patient experienced a procedural complication and severe LVEF drop following an ablation for atrial fibrillation during the washout period

 Temporary discontinuation for changes in QTcF occurred in 6 patients (3 on mavacamten, 3 on placebo)

All patients resumed treatment and completed the study

Conclusions

EXPLORER-HCM trial demonstrated efficacy of mavacamten in obstructive HCM. Primary and all secondary endpoints were met with high statistical significance.

Mavacamten demonstrated clinically important effects on post-exercise LVOT gradients. Nearly 75% of patients saw a reduction below guideline-defined thresholds for invasive SRT and 56% showed complete relief of obstruction.

Mavacamten demonstrated marked improvements in NYHA class, exercise performance, and key aspects of health status, and were accompanied by reductions in serum NT-proBNP and troponin I levels.

Mavacamten was well tolerated with a safety profile comparable to placebo.

By virtue of these data, the FDA has granted breakthrough therapy designation.

I would like to thank:

Fellow co-authors:

Artur Oreziak, MD, PhD, Roberto Barriales-Villa, MD, PhD, Theodore P. Abraham, MD, Ahmad Masri, MD, MS, Pablo Garcia-Pavia, MD, PhD, Sara Saberi, MD, MS, Neal K. Lakdawala, MD, Matthew T. Wheeler, MD, PhD, Anjali Owens, MD, Milos Kubanek, MD, PhD, Wojciech Wojakowski, MD, Morten K. Jensen, MD, PhD, Juan Gimeno-Blanes, MD, PhD, Kia Afshar, MD, Jonathan Myers, PhD, Sheila M. Hegde, MD, Scott D. Solomon, MD, Amy J. Sehnert, MD, David Zhang, PhD, Wanying Li, PhD, Mondira Bhattacharya, MD, Jay M. Edelberg, MD, PhD, Cynthia Burstein Waldman, JD, Steven J. Lester, MD, Andrew Wang, MD, Carolyn Y. Ho, MD, and Daniel Jacoby, MD

All EXPLORER-HCM investigators

Study coordinators, core laboratories, and the MyoKardia study team

Especially, the patients and their families