Coronary angiography after out-of-hospital cardiac arrest without ST-elevation

Steffen Desch, MD
on behalf of the TOMAHAWK investigators

Heart Center Leipzig and University Heart Center Lübeck, Germany
Causes of OHCA – Registry

714 OHCA admitted to ICU

435 w/o obvious extracardiac etiology

134 ST elevation (31%)
- 128 with significant lesion (96%)
- 6 w/o significant lesion (4%)

301 other ECG patterns (69%)
- 176 with significant lesion (58%)
- 125 w/o significant lesion (42%)

92 PCI attempted (31%)

Respiratory failure n=131
Brain injury n=17
Metabolic disorders n=15
Hemorrhage n=10
Miscellaneous n=106

714 OHCA admitted to ICU

Pros and Cons
of Immediate Angiography after OHCA

Pro
- Prevention of
 - Large myocardial injury
 - Hemodynamic deterioration
 - Heart failure
in presence of a treatable culprit lesion

Con
- Delay in diagnosis and treatment for etiologies other than ACS
- Risk of complications
 - Renal damage
 - Reperfusion injury
 - Stent thrombosis
 - Bleeding
 - Cerebral damage by application of contrast in the setting of compromised blood-brain barrier after OHCA
In resuscitated OHCA patients without ST-segment elevation, routine immediate coronary angiography (possibly followed by revascularization) is superior to a delayed or selective approach regarding 30-day all-cause mortality.
Survivor of out-of-hospital cardiac arrest without ST-segment elevation

Check in- and exclusion criteria

Informed consent

Randomization

Immediate angiography (direct transport to cath)

Initial intensive care evaluation with delayed angiography if indicated

Primary endpoint: 30-day mortality

Follow-up at 6 and 12 months (telephone)

Design

31 active sites in Germany and Denmark
Key In- and Exclusion Criteria

Inclusion criteria
- Documented resuscitated OHCA of possible cardiac origin and return of spontaneous circulation
- Age ≥30 years
- Informed consent

Exclusion criteria
- ST-segment elevation or left bundle branch block
- No ROSC upon hospital admission
- Severe hemodynamic or electrical instability requiring immediate coronary angiography/intervention (delay clinically not acceptable)
- Obvious extra-cardiac etiology
- In-hospital cardiac arrest
- Known or likely pregnancy
- Participation in another intervention study interfering with the research questions of the TOMAHAWK trial
Statistical Methodology

Primary endpoint
- 30-day all-cause mortality

Sample size
- Estimated 34% event rate in immediate vs. 46% in delayed/selective angiography for primary endpoint
- 1 interim analysis (after 109 events)
- 2-sided test time-to-event analysis; power 80%; alpha=0.034 for final analysis
- To compensate for losses in follow-up → 558 patients

Secondary endpoints at 30 day follow-up
- Myocardial infarction at 30 days
- Severe neurological deficit (cerebral performance categories 3-5)
- Composite endpoint of all-cause mortality or severe neurological deficit at 30 days
- Length of intensive care unit stay
- Serial Simplified Acute Physiology Score (SAPS) II
- Rehospitalization for congestive heart failure within 30 days
- Peak release of myocardial enzymes
- Moderate and severe bleeding (BARC definition types 2–5)
- Stroke
- Acute renal failure requiring renal replacement therapy

Primary endpoint

Sample size

Secondary endpoints at 30 day follow-up

To compensate for losses in follow-up → 558 patients
Analyzed (n=265)

Excluded from analysis (n=16)
- Withdrawal of informed consent (n=14)
- Violation of in-/exclusion criteria [in hospital cardiac arrest] (n=2)

Immediate angiography (n=281)
Received allocated intervention (n=260)
Did not receive allocated intervention (n=21)
- No catheterization at all (n=6)
- No catheterization in first 24h (n=1)
- No record on file due to withdrawal of informed consent (n=14)

Randomization (n=554)

Not included (n=4)
- No completion of informed consent process (n=4)

Considered for inclusion (n=558)

Immediate angiography (n=281)
Delayed/selective angiography (n=273)

Received allocated intervention (n=245)
Did not receive allocated intervention (n=28)
- Catheterization before 24h without fulfilling crossover criteria for early catheterization (n=22)
- No record on file due to withdrawal of informed consent (n=6)

Excluded from analysis (n=8)
- Withdrawal of informed consent (n=6)
- Violation of in-/exclusion criteria [STEMI] (n=2)

Immediate angiography (n=281)

Excluded from analysis (n=28)
- Violation of in-/exclusion criteria [in hospital cardiac arrest] (n=2)
Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Immediate angiography (n=265)</th>
<th>Delayed/selective angiography (n=265)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years); median (IQR)</td>
<td>69 (59-78)</td>
<td>71 (60-79)</td>
</tr>
<tr>
<td>Female sex; n/total (%)</td>
<td>80/265 (30.2)</td>
<td>81/265 (30.6)</td>
</tr>
<tr>
<td>Known coronary artery disease; n/total (%)</td>
<td>79/229 (34.5)</td>
<td>93/229 (40.6)</td>
</tr>
<tr>
<td>Diabetes mellitus; n/total (%)</td>
<td>71/244 (29.1)</td>
<td>74/251 (29.5)</td>
</tr>
<tr>
<td>Arrest witnessed; n/total (%)</td>
<td>236/259 (91.1)</td>
<td>226/257 (87.9)</td>
</tr>
<tr>
<td>Shockable first monitored rhythm; n/total (%)</td>
<td>126/241 (52.3)</td>
<td>142/242 (58.7)</td>
</tr>
<tr>
<td>Bystander cardiopulmonary resuscitation; n/total (%)</td>
<td>142/247 (57.5)</td>
<td>152/252 (60.3)</td>
</tr>
<tr>
<td>Time from arrest to basic life support (min); median (IQR)</td>
<td>2 (0-8)</td>
<td>1 (0-5)</td>
</tr>
<tr>
<td>Time from arrest to return of spontaneous circulation (min); median (IQR)</td>
<td>15 (10-20)</td>
<td>15 (8-20)</td>
</tr>
<tr>
<td>Glasgow Coma Scale on admission; median (IQR)</td>
<td>3 (3-3)</td>
<td>3 (3-3)</td>
</tr>
<tr>
<td>Left ventricular ejection fraction on admission (%); median (IQR)</td>
<td>45 (38-56)</td>
<td>44 (30-50)</td>
</tr>
</tbody>
</table>
Characteristics and Treatment of CAD

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Immediate angiography (n=265)</th>
<th>Delayed/selective angiography (n=265)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary angiography performed; n/total (%)</td>
<td>253/265 (95.5)</td>
<td>165/265 (62.2)</td>
</tr>
<tr>
<td>Time from arrest to coronary angiography (h); median (IQR)</td>
<td>2.9 (2.2-3.9)</td>
<td>46.9 (26.1-116.6)</td>
</tr>
<tr>
<td>Severity of coronary artery disease; n/total (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No significant disease</td>
<td>99/252 (39.3)</td>
<td>46/165 (27.9)</td>
</tr>
<tr>
<td>1-vessel disease</td>
<td>37/252 (14.7)</td>
<td>21/165 (12.7)</td>
</tr>
<tr>
<td>2-vessel disease</td>
<td>32/252 (12.7)</td>
<td>26/165 (15.8)</td>
</tr>
<tr>
<td>3-vessel disease</td>
<td>84/252 (33.3)</td>
<td>72/165 (43.6)</td>
</tr>
<tr>
<td>Culprit lesion identified; n/total (%)</td>
<td>94/247 (38.1)</td>
<td>67/156 (43.0)</td>
</tr>
<tr>
<td>PCI performed; n/total (%)</td>
<td>93/250 (37.2)</td>
<td>70/162 (43.2)</td>
</tr>
</tbody>
</table>
Primary Endpoint

Survival probability over Days after Randomization for Immediate and Delayed/Selective angiography.

Hazard ratio 1.28 (95% CI 1.00-1.63)
Log-rank p=0.06

Immediate angiography:
- Days: 265
- Values: 265, 195, 151, 138, 129, 123, 117

Delayed/Selective angiography:
- Days: 265
- Values: 265, 207, 163, 149, 139, 138, 133
Secondary Endpoints at 30 days

<table>
<thead>
<tr>
<th></th>
<th>Immediate angiography (n=265)</th>
<th>Delayed/selective angiography (n=265)</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocardial infarction; n/total (%)</td>
<td>0/248 (0)</td>
<td>2/250 (0.8)</td>
<td>RR 0 (0-1.93)</td>
</tr>
<tr>
<td>Severe neurological deficit; n/total (%)</td>
<td>21/112 (18.8)</td>
<td>16/126 (12.7)</td>
<td>RR 1.48 (0.82-2.67)</td>
</tr>
<tr>
<td>All-cause mortality or severe neurological deficit; n/total (%)</td>
<td>164/255 (64.3)</td>
<td>138/248 (55.6)</td>
<td>RR 1.16 (1.002-1.34)</td>
</tr>
<tr>
<td>Peak release of myocardial enzymes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troponin T (µg/L); median (IQR)</td>
<td>0.39 (0.14-1.26)</td>
<td>0.34 (0.12-1.07)</td>
<td>HLE 0.04 (-0.03-0.11)</td>
</tr>
<tr>
<td>Troponin I (µg/L); median (IQR)</td>
<td>1.46 (0.42-5.69)</td>
<td>1.10 (0.40-5.75)</td>
<td>HLE 0.06 (-0.37-0.49)</td>
</tr>
<tr>
<td>Moderate and severe bleeding (BARC 2-5)*; n/total (%)</td>
<td>2/260 (4.6)</td>
<td>8/232 (3.4)</td>
<td>RR 1.34 (0.57-3.14)</td>
</tr>
<tr>
<td>Stroke*; n/total (%)</td>
<td>4/258 (1.6)</td>
<td>5/242 (2.1)</td>
<td>RR 1.13 (0.33-3.84)</td>
</tr>
<tr>
<td>Acute renal failure requiring renal replacement therapy*; n/total (%)</td>
<td>49/259 (18.9)</td>
<td>38/241 (15.8)</td>
<td>RR 1.14 (0.78-1.68)</td>
</tr>
</tbody>
</table>

*Assessed in safety (as treated) population

RR = Relative risk, HLE = Hodges-Lehmann estimator for location shift
Subgroup Analysis

<table>
<thead>
<tr>
<th></th>
<th>Immediate angiography</th>
<th>Delayed/selective angiography</th>
<th>Hazard ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients with event/total no. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥65 years</td>
<td>104/164 (0.63)</td>
<td>99/175 (0.54)</td>
<td>1.29 (0.97-1.73)</td>
</tr>
<tr>
<td><65 years</td>
<td>40/102 (0.4)</td>
<td>26/90 (0.31)</td>
<td>1.37 (0.84-2.23)</td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>82/173 (0.47)</td>
<td>69/177 (0.39)</td>
<td>1.32 (0.95-1.83)</td>
</tr>
<tr>
<td>Yes</td>
<td>49/71 (0.69)</td>
<td>46/74 (0.62)</td>
<td>1.19 (0.78-1.81)</td>
</tr>
<tr>
<td>First monitored rhythm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-shockable</td>
<td>84/115 (0.73)</td>
<td>68/100 (0.68)</td>
<td>1.24 (0.88-1.75)</td>
</tr>
<tr>
<td>Shockable</td>
<td>49/126 (0.39)</td>
<td>43/142 (0.3)</td>
<td>1.44 (0.99-2.19)</td>
</tr>
<tr>
<td>Confirmed myocardial infarction as OHCA trigger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>73/145 (0.5)</td>
<td>63/159 (0.4)</td>
<td>1.34 (0.95-1.89)</td>
</tr>
<tr>
<td>Yes</td>
<td>18/47 (0.38)</td>
<td>18/43 (0.42)</td>
<td>0.97 (0.5-1.9)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>50/90 (0.62)</td>
<td>37/81 (0.46)</td>
<td>1.04 (1.06-2.54)</td>
</tr>
<tr>
<td>Male</td>
<td>94/185 (0.51)</td>
<td>86/184 (0.47)</td>
<td>1.14 (0.84-1.53)</td>
</tr>
<tr>
<td>Targeted temperature management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>28/59 (0.47)</td>
<td>25/56 (0.45)</td>
<td>1.34 (0.77-2.33)</td>
</tr>
<tr>
<td>Yes</td>
<td>114/204 (0.56)</td>
<td>96/206 (0.47)</td>
<td>1.25 (0.96-1.67)</td>
</tr>
<tr>
<td>Time from arrest to ROSC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥15 min</td>
<td>99/171 (0.58)</td>
<td>97/170 (0.57)</td>
<td>1.02 (0.76-1.36)</td>
</tr>
<tr>
<td><15 min</td>
<td>20/39 (0.54)</td>
<td>17/37 (0.3)</td>
<td>1.51 (0.78-2.90)</td>
</tr>
</tbody>
</table>
Conclusions

• Among patients with resuscitated OHCA of possible cardiac origin with shockable and non-shockable arrest rhythm and no ST-elevation, a strategy of immediate unselected coronary angiography was not found to be beneficial over a delayed and selective approach with regard to the 30-day risk of all-cause death.

• The findings of the TOMAHAWK trial support results from a previous randomized trial (COACT) of OHCA patients with shockable arrest rhythms only, which found no significant differences in clinical outcome between immediate and delayed coronary angiography at 90 days and 1 year.
Trial Network and Organization

Principal investigator
Steffen Desch

Steering Committee
Steffen Desch
Anne Freund
Holger Thiele

Project Management, Monitoring
Kathrin Klinge
Sabine Brett

Data management, Statistical analysis
Inke R. König
Maren Vens
Frank Sandig

Clinical Event Committee
Ulrich Tebbe
Michael Oeff
Karl Georg Häusler

Funding
DZHK (German Cardiac Research Center)

DSMB
Guido Michels
Karl Werdan
Joachim Gerß

Homepage
https://tomahawk.dzhk.de/
Angiography after Out-of-Hospital Cardiac Arrest without ST-Segment Elevation