Effect of Thrombus Aspiration in Patients With Myocardial Infarction Presenting Late After Symptom Onset

Steffen Desch, MD

Thomas Stiermaier, MD; Suzanne de Waha, MD;
Philipp Lurz, MD, PhD; Matthias Gutberlet, MD; Marcus Sandri, MD;
Norman Mangner, MD; Enno Boudriot, MD;
Michael Woinke, MD; Sandra Erbs, MD; Gerhard Schuler, MD; Georg
Fuernau, MD; Ingo Eitel, MD; Holger Thiele, MD

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria
- Major Stock Shareholder/Equity
- Royalty Income
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit

Company

- Medtronic
- None related to the study

Background

 Recent trials on thrombus aspiration in STEMI reported disappointing results with no reduction in mortality and possibly an increase in stroke.

Frobert et al. *N Engl J Med* 2013;369:1587-97. Jolly et al. *N Engl J Med* 2015;372:1389-98.

Background Hypothesis

 Routine thrombus aspiration reduces microvascular obstruction (MVO) assessed by cardiac magnetic resonance imaging (CMR) in patients with subacute STEMI presenting between 12 and 48 hours after symptom onset.

Design

- Prospective, randomized, controlled, single-blind
- Single-center

Methods Main Inclusion Criteria

- STEMI ≥12 and ≤48 hours after symptom onset
- Age ≥18 and ≤90 years

Main Exclusion Criteria

- Prior thrombolysis
- Contraindications for CMR
- Life expectancy <6 months

Methods *Primary Endpoint*

Extent of MVO on late gadolinium enhancement
 CMR at day 1 - 4

Secondary Endpoints

• CMR

- Infarct size
- Myocardial salvage
- LV volumes and ejection fraction

Angiography

- TIMI flow post-PCI
- Myocardial blush grade post-PCI
- Enzymatic infarct size
 - High-sensitivity troponin T after 24 and 48 hours
- Clinical outcome
 - 30-day follow-up
 - All-cause and cardiovascular death, myocardial reinfarction, TLR, TVR, stent thrombosis, stroke

Percutaneous Coronary Intervention

- Thrombus aspiration:
 - Before first balloon inflation
 - Manual aspiration catheter

(Export® AP, 6 French, Medtronic Inc.)

- Minimum of 2 passages recommended
- Additional procedural strategies:
 - According to current best practice

(e.g. heparin/bivalirudin ± GP IIb/IIIa-inhibitor)

Cardiac Magnetic Resonance Imaging

Standard protocol / day 1 - 4

- CMR core laboratory
 - University Heart Center Lübeck, Germany
 - Assessment by fully blinded operators

Sample Size Calculation

Mean difference 2.0 %LV

Standard deviation 3.5 %LV

Power 90%

Alpha 0.05

Drop-out 15%

Sample size, n: 152 2 x 76

Study Flow

Baseline Characteristics

	Thrombus aspiration n = 70	Standard PCI n = 74
Age, years	66 ±12	66 ± 15
Hypertension, n (%)	55/70 (79)	48/74 (65)
Hyperlipoproteinemia, n (%)	11/70 (16)	17/74 (23)
Diabetes mellitus, n (%)	22/70 (31)	25/74 (34)
Ongoing signs of ischemia, n (%)	28/57 (49)	34/62 (55)
Symptom-onset-to-balloon, hours	26 ± 13	29 ± 12
TIMI flow pre-PCI 0, n (%)	44/70 (63)	46/74 (62)
GP IIb/IIIa-inhibitor, n (%)	18/70 (25)	21/74 (28)

Primary Endpoint: Microvascular Obstruction

MVO in Predefined Subgroups

Baseline variable	No. of patients	Mean Difference in MVO %LV (95% CI)	P-value for interaction
All Patients	111	-	
Male sex	86/111	- <mark>-</mark>	0.95
Female sex	25/111		
Diabetes	32/111		0.29
No diabetes	79/111	- -	
TIMI thrombus grade 0-4	38/111		0.82
TIMI thrombus grade 5	73/111	-	
TIMI-flow pre PCI 0-1	77/111	 -	0.53
TIMI-flow pre PCI 2-3	34/111		
GP IIb/IIIa-inhibitor	32/111		0.35
No GP IIb/IIIa-inhibitor	79/111		
		0 1 2	
		Thrombectomy Standard PCI better better	

Secondary Endpoints: Infarct Size and Salvage

Secondary Endpoints: LV Function and Volumes

Secondary Endpoints: Angiography

Secondary Endpoints: Enzymatic Infarct Size

Secondary Endpoints: Clinical Outcome

	Thrombus aspiration n = 70	Standard PCI n = 74	P Value
All-cause death, n (%)	2 (3)	4 (5)	0.68
Cardiovascular death, n (%)	2 (3)	3 (4)	1.0
Reinfarction, n (%)	0	0	-
TVR, n (%)	2 (3)	0	0.24
TLR, n (%)	2 (3)	0	0.24
Stent thrombosis, n (%)	0	0	-
Stroke, n (%)	0	1 (1)	0.24

Conclusion

 In patients with subacute STEMI routine manual thrombus aspiration before PCI failed to show a significant reduction in the primary endpoint of MVO assessed by CMR, as compared to conventional PCI alone.

 The finding is supported by a lack of benefit in angiographic, enzymatic, and clinical secondary endpoints.

