REASSESSMENT OF ANTI-PLATELET THERAPY USING AN INDIVIDUALIZED STRATEGY BASED ON GENETIC EVALUATION - THE RAPID GENE STUDY

TCT 2011

Derek So MD FRCPC FACC On behalf of the RAPID GENE Investigators ClinicalTrials.gov (NCT01184300)

RAPID GENE - Study Organization

Investigators:

DerekYF So (PI), Jason D Roberts (Co-PI),

George A Wells, Michel R Le May, Chris A Glover, Alexander J Dick, Michael P Froeschl, Jean-Francois Marquis, Edward R O'Brien, Sandro C Goncalves, Irena M Druce, Alexandre F Stewart, Michael H Gollob, Marino Labinaz

Sponsor:

Spartan Biosciences, Inc

Regulatory Boards:

Health Canada

Ottawa Hospital Point-of-care Committee

Special Thanks:

Cheryl Charlebois, Lyne Stuewe, Colleen Chilton, Luan Tran, Jordan Bernick

Accumulated Evidence on *CYP2C19* loss-of-function alleles

Evidence based on 9 studies with 9685 patients suggest an association of *CYP2C19* loss-of-function alleles to MACE and stent thrombosis

Mega et al. JAMA 2010. 304(16):1821-30

Use of Pharmacogenetics Data in Patients after PCI

- Major obstacles preclude present application of genetics:
 - Costs
 - Lack of local expertise for genetic testing
 - Inability to provide timely information
- Accordingly, a prospective evaluation of personalized approach to anti-platelet therapy after PCI based on genetic data had not been possible

The RAPID Program: Spartan RX CYP2C19

•Buccal Swab performed by nurses (no prior training in genetics) $-\frac{1}{2}$ hour course on machine

•1 step insertion into machine

•60 minutes to identify:

- CYP2C19*2 carrier status
- Heterozygous vs. Homozygous

RAPID GENE - Primary Objective and Hypothesis

- To evaluate the first point-of-care genetic test in medicine for its accuracy and potential clinical utility
- We hypothesized that a strategy of rapid genotyping followed by selective administration of prasugrel to CYP2C19*2 carriers will decrease high on-treatment platelet reactivity compared to standard therapy

RAPID GENE – Study Schema

UNIVERSITY OF OTTAWA HEART INSTITUTE INSTITUT DE CARDIOLOGIE DE UNIVERSITE D' OTTAWA

Rap³d Gene

Inclusion and Exclusion Criteria

Inclusion

 Age 18 – 75 receiving PCI for non-ST elevation acute coronary syndrome or stable coronary disease

Exclusion

- Initial treatment with anti-platelet other than aspirin and clopidogrel
- Requirement for warfarin or dabigatran
- History of stroke or TIA
- Platelet count of < 100 000/uL</p>
- Known bleeding diathesis
- Hematocrit of < 30% or >52%
- Severe liver dysfunction
- Creatinine clearance of <30mL/min

Pregnancy

Primary Outcome

 Proportion of CYP2C19*2 carriers with a P2Y12 Reactivity Units value (PRU) > 234 (high ontreatment platelet reactivity)¹ in the rapid genotyping arm compared with CYP2C19*2 carriers in the standard therapy arm after one week of dual anti-platelet therapy.

1.Price et al. Eur Heart J. 2008;29(8):992-1000

Secondary Outcomes

- Mean PRU and percentage platelet inhibition among CYP2C19*2 carriers
- Platelet function measures between randomized groups
- Concordance of point-of-care genetic testing with direct DNA sequencing
- Composite of cardiovascular death, non-fatal myocardial infarction, re-hospitalization and stent thrombosis (ARC definite and probable)
- Safety outcomes of TIMI major and minor bleeding

Power Analysis: Sample Size Estimates

- Assumptions:
 - 60% non-responder rate among CYP2C19*2 carriers
 - 75% relative risk reduction with alteration from clopidogrel to prasugrel.
- At a power of 90%, 23 CYP2C19*2 carriers per group would be required. Assuming a 25% prevalence of CYP2C19*2 carriers among a population of Western European descent and an 8% loss to follow-up rate, 200 patients were projected for enrollment.

Baseline Characteristics (1)

	Rapid Genotyping (N=91)	Standard Therapy (N=96)
Age – yr	59.5±9.3	60.8±8.7
Female Sex – no. (%)	19 (20.9)	22 (22.9)
Ethnicity – no. Caucasian (%)	85 (93.4)	92 (95.8)
Previous Myocardial Infarction – no. (%)	17 (18.7)	13 (13.5)
Body Mass Index– kgm ⁻²	29.5±4.7	28.3±4.9
Acute Coronary Syndrome – no. (%)	33 (36.3)	37 (38.5)
Cardiac Risk Factors		
Hypertension – no. (%)	56 (61.5)	63 (65.6)
Diabetes Mellitus – no. (%)	23 (25.3)	19 (19.8)
Hypercholesterolemia– no. (%)	77 (84.6)	75 (78.1)
Current smoking – no. (%)	23 (25.3)	35 (36.5)
Past smoking – no. (%)	28 (30.8)	16 (16.7)

Baseline Characteristics (2)

	Rapid Genotyping (N=91)	Standard Therapy (N=96)
Baseline Medications		
Prior Aspirin Use – no. (%)	84 (93.3)	88 (91.7)
Statin – no. (%)	81 (89.0)	83 (87.4)
Ace-Inhibitor– no. (%)	41 (45.1)	43 (45.7)
Beta-Blocker – no. (%)	70 (76.9)	69 (71.9)
Proton Pump Inhibitor – no. (%)	19 (20.9)	18 (18.8)
Angiographic		
Left Main Artery	2 (2.2)	0 (0)
Left Anterior Descending Artery	42 (46.2)	42 (43.8)
Circumflex Artery	32 (35.2)	33 (34.4)
Right Coronary Artery	32 (35.2)	37 (38.5)
Saphenous Vein Graft	4 (4.4)	2 (2.1)
Drug eluting stent	71(78.0)	73 (76.0)

Genotyping Data:

	Rapid Genotyping (N=91)	Standard Therapy (N=96)
Carriers of CYP2C19*2 allele no.(%)	23(25.3)	23(24.0)
Heterozygous CYP2C19*2 no.(%)	19(20.9)	20(20.8)
Homozygous CYP2C19*2 no.(%)	4(4.4)	3(3.1)

Performance Characteristics of Point-ofcare Testing vs. Direct DNA Sequencing

- Sensitivity 100%
- Specificity 99.4%
- Conclusive Rate 93.6%

Primary Endpoint: Proportion of *CYP2C19*2* Carriers with High On-treatment Platelet Reactivity (PRU>234)

Rap²d Gene

Secondary Outcomes: Platelet Function Measures in *CYP2C19*2* carriers

	Rapid Genotyping	Standard Therapy	
	(N=23)	(N=23)	p-value
Baseline PRU	198.7 80.7	198.7 91.9	1.00
PRU at Day 7	75.6 57.3	207.3 55.8	<0.001
% Platelet Inhibition at Day 7	73.3 20.3	27.0 13.4	<0.001
Change in PRU from Baseline to Day 7	123.09 77.2	-8.48 74.0	<0.001

Secondary Outcomes: Clinical

- There were no major adverse cardiovascular events in either group at 7 and 30 days
- TIMI major or minor bleeding occurred in 5/91 (5.5%) of the rapid genotyping patients and 2/96 (2.1%) of standard therapy patients, p=0.27
- TIMI major bleeding occurred in 2.2% and 1.0% of rapid genotyping and standard therapy patients, respectively, p=0.61
 - 1 of 2 patients in rapid genotyping group with TIMI major bleed was on clopidogrel

RAPID GENE - Summary

- Point-of-care genetic testing following PCI performed at the bedside by clinical nurses permits accurate identification of CYP2C19*2 carriers
- Point-of-care genetic testing is clinically feasible and facilitates rapid personalization of anti-platelet therapy.
- Administration of prasugrel to CYP2C19*2 carriers decreased the rate of high on-treatment platelet reactivity relative to standard therapy with clopidogrel.

RAPID GENE

This represents the validation and proofof-concept of the first point-of-care genetic test in clinical medicine. Results will lead to larger scale studies evaluating the role of pharmacogenomics after PCI

