Ticagrelor versus Clopidogrel in Troponin-negative Patients with Acute Coronary Syndrome Undergoing Ad-Hoc Percutaneous Coronary Intervention: Results of a Prospective, Randomized, Multicenter Pharmacodynamic Study

Roxana Mehran, Dominick J. Angiolillo, Ron Waksman, Joseph M. Sweeney, Ganesh Raveendran, Renli Teng, Yonggang Zhao, Glenn Carlson

NCT01603082
Acknowledgments and Disclosures

Funding
• This study was supported by AstraZeneca

Conflicts of interest
• R. Mehran has received research grants from DSI/Eli Lilly, Bristol-Myers Squibb/Sanofi-Aventis, AstraZeneca, and The Medicines Company; and consulting or advisory board fees from AstraZeneca, Bayer, CSL Behring, Janssen Pharmaceuticals, Inc., Merck & Co., Inc., Osprey Medical Inc., Regado Biosciences, Inc., The Medicines Company, Watermark Consulting, Abbott Laboratories, Boston Scientific, Covidien, and Sanofi-Aventis
• D.J. Angiolillo has received payment as an individual for: a) Consulting fee or honorarium from Bristol-Myers Squibb, Sanofi-Aventis, Eli Lilly, Daiichi-Sankyo, The Medicines Company, AstraZeneca, Merck, Abbott Vascular and PLx Pharma; b) Participation in review activities from CeloNova, Johnson & Johnson, St. Jude Medical, and Sunovion. Institutional payments for grants from Bristol-Myers Squibb, Sanofi-Aventis, GlaxoSmithKline, Eli Lilly, Daiichi-Sankyo, The Medicines Company, AstraZeneca and Gilead
• R. Waksman has received consulting fees or honoraria from AstraZeneca, Abbott Vascular, Boston Scientific, Medtronic Vascular, Biotronik, and Biosensors, and received institutional payments for investigator grants from AstraZeneca, Boston Scientific, Edwards Life Sciences, Medtronic Vascular, Biotronik, Biosensors, and InfraReDx
• J.M. Sweeny and G. Raveendran have no conflicts of interest to declare
• R. Teng and G. Carlson are employees of AstraZeneca
• Y. Zhao is a consultant to AstraZeneca
Ad-Hoc PCI Study Sites and PIs

15 US sites randomized patients

- Dominick J. Angiolillo: University of Florida, Jacksonville, FL – High Enroller
- Joseph M. Sweeny: Mount Sinai Medical Center, New York, NY
- Barry Bertolet: North Mississippi Medical Center, Tupelo, MS
- Ron Waksman: Washington Hospital Center, Washington, DC
- Thomas Stuckey: LeBauer CV Research Foundation, Greensboro, NC
- Robert Levitt: Sarah Cannon Research Institute, Richmond, VA
- Zakir Sahul: Michigan Heart PC, Ypsilanti, MI
- Ganesh Raveendran: University of Minnesota, Minneapolis, MN
- Zafir Hawa: North Kansas City Hospital, North Kansas City, MO
- Jeffrey Carr: Trinity Medical Center, Tyler, TX
- Frank Iacovone: Clara Maass Medical Center, Belleville, NJ
- Mohamed Effat: University of Cincinnati, Cincinnati, OH
- Mark Sasse: University of Alabama, Birmingham, AL
- Jose Exaire: Oklahoma VA Medical Center, Oklahoma City, OK
- Yerem Yeghiazarians: University of California, San Francisco, CA
Background

- Ticagrelor is an oral, direct-acting, reversible-binding platelet P2Y\textsubscript{12} receptor inhibitor
- The US Food and Drug Administration approval of ticagrelor for the treatment of ACS patients was based on efficacy in patients pretreated with a P2Y\textsubscript{12} inhibitor, irrespective of invasive or noninvasive management strategy1,2
- Many low-risk, troponin-negative ACS patients do not receive pretreatment with a P2Y\textsubscript{12} inhibitor
- Over half of all elective PCI procedures in the US are done on an ad-hoc basis in low-risk ACS patients – i.e., immediately after diagnostic coronary angiography3
- No previous study has assessed the effect of ticagrelor versus clopidogrel at the time of ad-hoc PCI

Aim and Hypothesis

Aim
• Evaluate the effect of ticagrelor versus clopidogrel loading dose (LD) on platelet reactivity in troponin-negative ACS patients undergoing ad-hoc PCI

Hypothesis
• Ticagrelor 180 mg LD (standard dose) will result in faster and greater inhibition of platelet reactivity compared with clopidogrel 600 mg LD in this patient population
Study Design

- Prospective, open-label, randomized, multicenter, US, Phase IV study

Visit 1
Screening period

Visit 2
Randomization 1:1, pre-LD platelet function testing,* first dose

- **Ticagrelor** 180 mg LD after diagnostic angiography, then 90 mg 12 h later + aspirin 160–500 mg LD, then 75–100 mg daily
- **Clopidogrel** 600 mg LD after diagnostic angiography + aspirin 160–500 mg LD, then 75–100 mg daily

Visit 3
Platelet function testing* (0.5, 2, and 8 h post-LD, and end of PCI)

*Measurement of P2Y$_{12}$ reaction units (PRU) with VerifyNow™
Inclusion and Exclusion Criteria

Inclusion criteria

• Age ≥18 years
• Women (post-menopausal or surgically sterile) and men
• Documented non-ST-segment elevation ACS
• ≥1 negative troponin test (Tnl, TnT or hsTn) 6–48 h after symptom onset
• On aspirin as antiplatelet medication

Key exclusion criteria

• Contraindication to study drug
• Use of any thienopyridine or ticagrelor within 7 days prior to randomization
• Any indication for chronic oral anticoagulation
• Concomitant therapy with strong CYP3A inhibitors, CYP3A substrates with narrow therapeutic index, or strong CYP3A inducers
Study Endpoints and Safety Evaluation

Primary endpoint
- Platelet reactivity 2 h after ticagrelor or clopidogrel LD, measured as PRU level using VerifyNow™

Secondary endpoints
- PRU levels at 0.5 h post dose, end of PCI (when guide catheter removed from body), and 8 h post dose
- Percentage reduction from baseline in PRU
- Percentage IPA from baseline

Exploratory endpoint
- Percentage of patients with high on-treatment PRU levels (≥208)

Safety evaluation
- Assessment of AEs (including bleeding), physical examination, and vital signs

IPA, inhibition of platelet aggregation, measured as P2Y_{12} receptor inhibition
Statistical Analysis

Statistical analysis

- The primary analysis of the difference between ticagrelor and clopidogrel in PRUs at 2 hours was analyzed using a two-sample t-test. Treatment level means and 2-sided 95% confidence intervals (CIs) were estimated. Tests were evaluated with a 2-sided alpha level of 0.05

Sample size

- Calculations using 90% power, detection of a difference of 100 PRUs, and a 2-sided alpha of 0.05 yielded a required sample size of 40 completed patients, with 20 per treatment group. This assumed a standard deviation (SD) of 93 PRUs based on a previous study. However, the administration of study treatment in a supine position was assumed to incur a 2- to 3-fold increase in variability, resulting in a sample size of approximately 100 patients
Results

Patient Disposition and Characteristics
Patient Disposition

Screened (n=343)

Did not meet inclusion/exclusion criteria (n=241)
Not randomized (n=2)
Progressive disease (n=1)
PI's decision (n=1)

Met inclusion/exclusion criteria (n=102)

Randomized (n=100)
Incorrectly randomized (n=4)

Did not meet inclusion/exclusion criteria (n=241)
Not randomized (n=2)
Progressive disease (n=1)
PI's decision (n=1)

Ticagrelor (n=51)
Safety population (n=51)
PD population (n=46)†
 Missing analyzable data (n=1)
 Protocol deviation (n=4)
Completed study (n=49)
Completed treatment (n=47)
 No PCI, patient had received 2 doses prior, discontinued, unable to place stent/wire (n=1 each)

Clopidogrel (n=49)
Safety population (n=49)
PD population (n=47)
 Missing analyzable data (n=0)
 Protocol deviation (n=2)
Completed study (n=48)
Withdrawn due to AE (n=1)
Completed treatment (n=49)

†One patient with pre-dose PRU <150 was excluded from primary and secondary endpoint analyses (n=45)
Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Ticagrelor (n=51)</th>
<th>Clopidogrel (n=49)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years; mean (SD)</td>
<td>60.1 (10.7)</td>
<td>63.0 (9.1)</td>
</tr>
<tr>
<td>Women, n (%)</td>
<td>17 (33.3)</td>
<td>13 (26.5)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>33 (71.7)</td>
<td>33 (71.7)</td>
</tr>
<tr>
<td>Black or African American</td>
<td>11 (23.9)</td>
<td>11 (23.9)</td>
</tr>
<tr>
<td>Other†</td>
<td>2 (4.4)</td>
<td>2 (4.3)</td>
</tr>
<tr>
<td>Body mass index >30 kg/m², n (%)‡</td>
<td>24 (48.0)</td>
<td>24 (49.0)</td>
</tr>
<tr>
<td>CV risk factors, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>38 (74.5)</td>
<td>42 (85.7)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>44 (86.3)</td>
<td>48 (98.0)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>20 (39.2)</td>
<td>16 (32.7)</td>
</tr>
<tr>
<td>Chronic kidney disease, GFR <60 mL/min/1.73m²</td>
<td>7 (13.7)</td>
<td>7 (14.3)</td>
</tr>
<tr>
<td>Prior CVD and CV procedures, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>5 (9.8)</td>
<td>2 (4.1)</td>
</tr>
<tr>
<td>Peripheral arterial occlusive disease</td>
<td>1 (2.0)</td>
<td>1 (2.0)</td>
</tr>
<tr>
<td>Stroke, ischemic</td>
<td>0</td>
<td>1 (2.0)</td>
</tr>
<tr>
<td>Prior myocardial infarction</td>
<td>9 (17.6)</td>
<td>16 (32.7)</td>
</tr>
<tr>
<td>Prior PCI</td>
<td>19 (37.3)</td>
<td>22 (44.9)</td>
</tr>
<tr>
<td>Prior coronary artery bypass graft,</td>
<td>5 (9.8)</td>
<td>14 (28.6)</td>
</tr>
</tbody>
</table>

GFR, glomerular filtration rate †Asian, American Indian, or Alaskan Native ‡Data missing for one patient
Results

Primary Endpoint
PRU at 2 h after LD
PD Population

Treatment difference (95% CI): -159.1 (-194.7, -123.5); p<0.001

Ticagrelor (n=45)
Clopidogrel (n=47)
Results

Secondary Endpoints
Time Course of PRU
PD Population

Mean PRU (95% CI)

- Ticagrelor (n=45)
- Clopidogrel (n=47)

Mean time to end of PCI 0.6 h
Percent Reduction from Baseline in PRU

PD Population

Mean (SD) percent reduction from baseline in PRU

- Ticagrelor (n=45)
- Clopidogrel (n=47)

<table>
<thead>
<tr>
<th>Time</th>
<th>Ticagrelor</th>
<th>Clopidogrel</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 h</td>
<td>1.5</td>
<td>0</td>
<td>p=0.702</td>
</tr>
<tr>
<td>End of PCI</td>
<td>5.5</td>
<td>-3.9</td>
<td>p=0.058</td>
</tr>
<tr>
<td>2 h</td>
<td>66.3</td>
<td>13.0</td>
<td>p<0.001</td>
</tr>
<tr>
<td>8 h</td>
<td>85.2</td>
<td>32.7</td>
<td>p<0.001</td>
</tr>
</tbody>
</table>
Device-defined IPA†
PD Population

Mean (SD) percent inhibition of P2Y₁² receptor from BASE
t Ticagrelor (n=45) Clopidogrel (n=47)

- 0.5 h: 9.8 ± 3.8 vs. 16.0 ± 4.5, p=0.031
- End of PCI: 14.0 ± 4.5 vs. 65.8 ± 14.0, p=0.005
- 2 h: 85.2 ± 31.1, p<0.001
- 8 h: 31.1 ± 6.2, p<0.001

†VerifyNow™-determined percent inhibition from the reference base channel
Results

Exploratory Endpoint
High On-treatment PRU (≥208)

PD Population

Patients with high on-treatment PRU (%)

- Ticagrelor (n=45)
- Clopidogrel (n=47)

<table>
<thead>
<tr>
<th>Time</th>
<th>Ticagrelor</th>
<th>Clopidogrel</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>88.6</td>
<td>91.1</td>
<td>0.74</td>
</tr>
<tr>
<td>0.5 h</td>
<td>84.1</td>
<td>86.7</td>
<td>0.77</td>
</tr>
<tr>
<td>End of PCI</td>
<td>81.8</td>
<td>97.7</td>
<td>0.030</td>
</tr>
<tr>
<td>2 h</td>
<td>13.3</td>
<td>78.3</td>
<td><0.001</td>
</tr>
<tr>
<td>8 h</td>
<td>2.4</td>
<td>53.3</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Mean time to end of PCI 0.6 h
Results

Safety Evaluation
Safety Summary

• No deaths or AEs leading to discontinuation of study drug
• Most frequently occurring AEs with ticagrelor vs clopidogrel were
 – Chest pain (4 vs 1 patient)
 – Unstable angina (0 vs 3 patients)
 – Hypotension (3 vs 0 patients)
 – Dyspnea (2 vs 1 patient)
 – Hematoma (2 vs 0 patients)
• All except 3 AEs (all in the ticagrelor group) and all except one SAE (duodenitis in 1 patient in the ticagrelor group) were considered unrelated to study drug
• Bleeding events considered related to study drug occurred in 3 (5.9%) ticagrelor patients, all of mild intensity, and 0 clopidogrel patients
• No notable findings for vital signs or physical examination
• No new clinically meaningful safety findings
Conclusions

• In low-risk ACS patients undergoing ad-hoc PCI, platelet reactivity as measured by VerifyNow™ was decreased to a greater extent at 2 h after ticagrelor LD, compared with clopidogrel LD, and was maintained up to the 8-h time point.

• The number of patients with high on-treatment PRU at 2 h was significantly lower with ticagrelor (p<0.001).

• Ticagrelor was well tolerated, with no notable safety findings, as assessed by AEs, bleeding events, physical examination, and vital signs.

• These findings suggest that a ticagrelor LD may be more effective than clopidogrel for inhibition of platelet activity in low-risk, troponin-negative ACS patients undergoing ad-hoc PCI.