Prospective Longitudinal Trial of \(FFR_{CT} \) Outcome and Resource Impacts

Clinical outcomes of \(FFR_{CT} \)-guided diagnostic strategies versus usual care in patients with suspected coronary artery disease

Pamela S. Douglas, Gianluca Pontone, Mark A. Hlatky, Manesh R. Patel, Campbell Rogers, Bernard De Bruyne

On behalf of the PLATFORM Investigators

Supported by HeartFlow Inc, Redwood, CA, USA
Background and Aim

- The optimal evaluation of new onset stable chest pain is uncertain. Ideally, testing will clarify the diagnosis and direct subsequent care while maximizing efficiency and safety.

- The recent PROMISE and SCOT-HEART trials compared anatomic and functional strategies, finding that CTA improved processes of care. However, CTA also increased rates of invasive catheterization and revascularization with no significant reduction in events.

- Fractional Flow Reserve derived from CTA (FFR_{CT}) may address these limitations by providing both functional and anatomic data.

- **STUDY AIM:** To determine whether use of a CTA/FFR_{CT} guided strategy, as compared to standard practice, will reduce the rate of invasive angiograms that show no obstructive CAD, without increasing the occurrence of major cardiac events.
Fractional Flow Reserve by CTA (FFR\textsubscript{CT})

- Routine CTA images are segmented and analysed quantitatively
- 3D coronary blood flow is modelled using computational fluid dynamics
- Maximal hyperemia is simulated to derive pressure and flow data, expressed as numeric values similar to invasive FFR evaluation
- FFR\textsubscript{CT} has been validated against invasively measured FFR

Hemodynamically significant LAD lesion by FFR\textsubscript{CT}
PLATFORd Trial Design

Stable CAD symptoms; Planned non-emergent NI test or catheterization
Age ≥ 18y; No prior CAD hx; Intermediate pretest probability of CAD

Planned NI test

Sequential cohorts

Standard NI test
Exercise ECG
Stress nuclear
Stress echo
Stress MRI
CTA

CTA + FFR_{CT}

FFR_{CT}
No FFR_{CT}

Cath w/o obstructive CAD (QCA or FFR ≤ 0.80) at 90 days

1° — MACE: death, MI, UA; Radiation (Costs; QOL)

Planned ICA

Sequential cohorts

Standard ICA

CTA + FFR_{CT}

FFR_{CT}
No FFR_{CT}

Testing/cath performed and interpreted locally; FFR_{CT} results w/in 24–48 hrs
All F/U testing and management decisions by care team following best practices
Endpoints and Statistical Analyses

For the primary endpoint of the rate of ICA without finding obstructive CAD, a sample size was used which provided 90% power to detect a 50% reduction with FFR_{CT} guided care, using a one-sided Wald test for a risk difference < 0 with an α error $= 0.025$

- Absence of obstructive CAD was determined by a blinded central laboratory
- Three sensitivity analyses performed: Propensity-matched, Best practices, Analyzable images; Primary endpoint also assessed using site read data

Safety endpoints: MACE adjudicated by blinded CEC

All treatment comparisons were performed as allocated (ITT)

All statistical assessments were independently confirmed by Duke Clinical Research Institute
Cohort Assignment and Follow-up

Enrolled and consented; N=584
Sept 13, 2013 – Nov 26, 2014

Planned NI test (N=204)

- Standard NI test N=100
- Received NI test N=100 pts
- Invasive cath N=12
- Revascularization N=5
- 90-day follow-up complete (N=97; 97.0%)
- Analysis (N=100; 100%)

Planned ICA (N=380)

- Standard ICA N=187
- FFR_{CT} guided N=193
- Invasive cath N=187
- Revascularization N=59
- 90-day follow-up complete (N=179; 95.7%)
- Analysis (N=187; 100%)

- CTA / FFR_{CT} N=104
- Invasive cath N=19
- Revascularization N=10
- 90-day follow-up complete (N=101; 97.1%)
- Analysis (N=104; 100%)

- FFR_{CT} guided N=193
- 69% CTAs sent for FFR_{CT}
- FFR_{CT} calculated in 87%
- ICA cancelled in 61%
- Analysis (N=193; 100%)
Baseline Characteristics

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Planned NI Test</th>
<th>Planned ICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age — mean ± SD, yr</td>
<td>Usual care strategy N=100</td>
<td>FFR<sub>CT</sub> strategy N=104</td>
</tr>
<tr>
<td></td>
<td>57.9±10.7</td>
<td>59.5±9.3</td>
</tr>
<tr>
<td>Female sex — no. (%)</td>
<td>34 (34.0)</td>
<td>44 (42.3)</td>
</tr>
<tr>
<td>Racial/ethnic minority — no. (%)</td>
<td>5 (5.0)</td>
<td>0 (0.0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cardiac risk factors</th>
<th>Planned NI Test</th>
<th>Planned ICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension — no. (%)</td>
<td>Usual care strategy N=100</td>
<td>FFR<sub>CT</sub> strategy N=104</td>
</tr>
<tr>
<td></td>
<td>38 (38.0)</td>
<td>57 (54.8)</td>
</tr>
<tr>
<td>Diabetes — no. (%)</td>
<td>8 (8.0)</td>
<td>6 (5.8)</td>
</tr>
<tr>
<td>Dyslipidemia — no. (%)</td>
<td>22 (22.0)</td>
<td>28 (26.9)</td>
</tr>
<tr>
<td>Tobacco use — no. (%)</td>
<td>52 (52.0)</td>
<td>59 (56.7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre-test probability CAD — ±SD, % (Updated Diamond and Forrester)</th>
<th>Planned NI Test</th>
<th>Planned ICA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Usual care strategy N=100</td>
<td>FFR<sub>CT</sub> strategy N=104</td>
</tr>
<tr>
<td></td>
<td>44.5±15.3</td>
<td>45.3±16.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statin use — no. (%)</th>
<th>Planned NI Test</th>
<th>Planned ICA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Usual care strategy N=100</td>
<td>FFR<sub>CT</sub> strategy N=104</td>
</tr>
<tr>
<td></td>
<td>24 (24.0)</td>
<td>29 (27.9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angina — no. (% typical / atypical)</th>
<th>Planned NI Test</th>
<th>Planned ICA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Usual care strategy N=100</td>
<td>FFR<sub>CT</sub> strategy N=104</td>
</tr>
<tr>
<td></td>
<td>99 (99.0)</td>
<td>98 (94.2)</td>
</tr>
</tbody>
</table>
Primary Endpoint
Invasive Catheterization w/o Obstructive CAD

Similar results in all pre-specified subgroups and cohorts

- Site-read ICA w/o obstructive CAD
 57% usual care; 9% FFR\textsubscript{CT}
- Age, sex, race, diabetes, pretest probability of CAD, country
- Propensity matched cohort
- Best practices cohort
- Adequate image cohort

![Planned ICA Chart]

<table>
<thead>
<tr>
<th>Planned ICA</th>
<th>Usual Care</th>
<th>FFRCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Obs CAD</td>
<td>N (%): 137 (73.3)</td>
<td>24 (12.4)</td>
</tr>
<tr>
<td>Obs CAD</td>
<td>P < 0.0001</td>
<td></td>
</tr>
<tr>
<td>No ICA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Primary Endpoint
Invasive Catheterization w/o Obstructive CAD

Planned NI Test

<table>
<thead>
<tr>
<th></th>
<th>Usual Care</th>
<th>FFRCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Obs CAD</td>
<td>6 (6.0)</td>
<td>13 (12.5)</td>
</tr>
<tr>
<td>Obs CAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No ICA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N (%): 6 (6.0) 13 (12.5) P = 0.95

Planned ICA

<table>
<thead>
<tr>
<th></th>
<th>Usual Care</th>
<th>FFRCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Obs CAD</td>
<td>137 (73.3)</td>
<td>24 (12.4)</td>
</tr>
<tr>
<td>Obs CAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No ICA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N (%): 137 (73.3) 24 (12.4) P < 0.0001
Safety Endpoints and Data at Revascularization

<table>
<thead>
<tr>
<th></th>
<th>Planned NI Test N=204</th>
<th>Planned ICA N=380</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Usual care strategy N=100</td>
<td>FFR<sub>CT</sub> strategy N=104</td>
</tr>
<tr>
<td>SAFETY: MACE — no. (%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>FFR<sub>CT</sub> strategy N=187</td>
<td>FFR<sub>CT</sub> strategy N=193</td>
</tr>
<tr>
<td>SAFETY: RADIATION EXPOSURE (enrolment to 90 days)</td>
<td>0.0002</td>
<td>0.20</td>
</tr>
<tr>
<td>Mean ± SD, mSv</td>
<td>5.8 ± 7.1</td>
<td>9.4 ± 4.9</td>
</tr>
<tr>
<td></td>
<td>8.8 ± 9.9</td>
<td>9.9 ± 8.7</td>
</tr>
<tr>
<td>FUNCTIONAL DATA AT REVASCULARIZATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI or CABG — no.</td>
<td>5</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>55</td>
</tr>
<tr>
<td>Functional data available</td>
<td>100%</td>
<td>51%</td>
</tr>
<tr>
<td></td>
<td>90%</td>
<td>96%</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

P values indicate statistical significance.
Summary

- PLATFORM enrolled a symptomatic, intermediate risk population for whom testing is currently recommended.

- Use of CT/FFR$_{CT}$ in patients with planned invasive catheterization was associated with a reduction in the rate of finding no obstructive CAD at ICA, from 73% to 12%.
 - Similar results in all subgroups.
 - No differences in MACE or radiation exposure.
 - No differences in revascularization rates.

- Use of FFR$_{CT}$ resulted in cancellation of 61% of ICAs and doubled the availability of functional data at PCI/CABG.
Conclusion

Among patients with planned ICA, use of a combined anatomic AND functional strategy employing CTA/FFR$_{CT}$ was safe and improved patient selection for invasive catheterization.
Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFRct: outcome and resource impacts study

Pamela S. Douglas1*, Gianluca Pontone2, Mark A. Hlatky3, Manesh R. Patel1, Bjarne L. Norgaard4, Robert A. Byrne5, Nick Curzen6, Ian Purcell7, Matthias Gutberlet8, Gilles Rioufol9, Ulrich Hink10, Herwig Walter Schuchlenz11, Gudrun Feuchtnner12, Martine Gilard13, Daniele Andreini2, Jesper M. Jensen4, Martin Hadamitzky5, Karen Chiswell1, Derek Cyr1, Alan Wilk14, Furong Wang14, Campbell Rogers14, and Bernard De Bruyne15, On Behalf of the PLATFORM Investigators†

1Duke Clinical Research Institute, Duke University School of Medicine, 7022 North Pavilion DUMC, PO Box 17969, Durham, NC 27713, USA; 2Centro Cardiologico Monza, IRCCS, University of Milan, Milan, Italy; 3Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, USA; 4Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; 5Deutsches Herzzentrum München, Technische Universität München, Munich, Germany; 6University Hospital Southampton NHS Trust, Southampton, UK; 7Freeman Hospital, Newcastle upon Tyne, UK; 8University of Leipzig Heart Centre, Leipzig, Germany; 9Hospi Ce de Lyon and CARCNI INSERM 1060, Lyon, France; 10Department of Cardiology, Johannes Gutenberg University Hospital, Mainz, Germany; 11UK Graz West, Graz, Austria; 12Department of Radiology, Innsbruck Medical University, Innsbruck, Austria; 13Department of Cardiology, Cavale Blanche Hospital, Brest, France; 14HeartFlow, Redwood City, CA, USA; and 15Cardiovascular Centre Aalst, Aalst, Belgium

doi: 10.1093/eurheartj/ehv444
eurheartj.oxfordjournals.org
THANK YOU to PLATFORM Patients and Sites...
...and to the PLATFORM Team

Executive Committee
Pamela S. Douglas
Bernard De Bruyne
Mark Hlatky
Manesh R. Patel
Gianluca Pontone
Campbell Rogers

Sites, Site Principal Investigators
Aarhus, Denmark: Bjarne Norgaard
Brest, France: Martine Gilard
Graz, Austria: Herwig Schuchlenz
Innsbruck, Austria: Gudrun Feuchtner
Leipzig, Germany: Matthias Gutberlet
Lyon, France: Gilles Rioufol
Mainz, Germany: Ulrich Hink
Milan, Italy: Gianluca Pontone
Munich, Germany: Robert Byrne
Newcastle, UK: Ian Purcell
Southampton, UK: Nick Curzen

Duke Clinical Research Institute
QCA Core Laboratory
Manesh R. Patel
W. Schuyler Jones
Rohan Shah
Gary Dunn
Alicia Lowe

Clinical Events
Manesh R. Patel
Christopher Fordyce
Joni O’Briant

Clinical Operations
Beth Martinez