Cerebral Embolic Protection In Patients Undergoing Surgical Aortic Valve Replacement (SAVR)

Michael Mack, MD, Michael Acker, MD, Steve Messe, MD
For the Cardiothoracic Surgical Trials Network (CTSN)

American College of Cardiology
Late Breaking Clinical Trials
March 19, 2017
Disclosures

• Co-PI of Partner 3 Trial – Sponsor Edwards Lifesciences
• Co-PI COAPT Trial- Sponsor Abbott Vascular
• Executive Board Intrepid Trial- Sponsor Medtronic
Background

- ~50,000 patients undergo SAVR per year in the U.S.
- The incidence of clinical stroke when examined by a neurologist and postoperative DW MRI in SAVR patients:

Purpose

Determine the safety and effectiveness of 2 cerebral embolic protection devices in reducing ischemic CNS injury

The **CardioGard** embolic protection cannula

The **Embol-X** intra-aortic filtration device
CONSORT Diagram

Assessed for Eligibility (n=4225)

Excluded (n=3842)
- Did not meet inclusion criteria (n=3355)
- Refused to participate (n=460)
- Other (n=27)

Randomized (n=383)

Embol-X (n=133)

Shared Control (n=132)

CardioGard (n=118)

Primary Endpoint Analysis
- Embol-X (n=133)
- Control (n=132)

Primary Endpoint Analysis
- CardioGard (n=118)
- Control (n=120)*

*12 subjects were randomized to control prior to the start of randomization in the CardioGard arm
CTSN Clinical Sites-18
383 Patients

- Baylor Research Institute-70
- Mission Hospital-56
- University of Pennsylvania-50
- University of Virginia-34
- Emory University-34
- Hôpital Laval-27
- Montreal Heart Institute-23
- Dartmouth-Hitchcock Medical Center-20
- University of Southern California-17
- Duke University-12
- Montefiore – Einstein-12
- NIH Heart Center at Suburban Hospital-7
- Columbia University Medical Center-6
- Cleveland Clinic Foundation-4
- Toronto General Hospital-4
- University of Alberta-3
- Ohio State University -2
- University of Maryland-2
Trial Infrastructure

Clinical and Data Coordinating Center
- Annette Gelijns, PhD, Alan Moskowitz, MD, Michael Parides, PhD
- InCHOIR, Mount Sinai

Network Chairs
- Richard Weisel, MD
- University of Toronto
- Patrick O’Gara, MD
- Brigham and Women’s Hospital

Funding
- NHLBI- Marissa Miller, DVM
- NINDS- Claudia Moy, PhD
- CIHR

Core Labs
- **Magnetic Resonance Imaging**
 - University of Pennsylvania MRI Core Lab
 - Michel Bilello, PhD
- **Neurocognitive**
 - Duke Neurocognition Core Lab
 - Jeffrey Browndyke, PhD
- **Histopathology**
 - CVPath Institute
 - Renu Virmani, MD
Trial Endpoints

- **PRIMARY**
 - Freedom from clinical or radiographic CNS infarction at 7 (+- 3) days post procedure

- **SECONDARY**
 - Composite: 1) clinical ischemic stroke, 2) acute kidney injury (AKI), 3) death ≤30 days after surgery
 - Volume and number of radiographic brain lesions
 - Mortality at 30 days
 - Serious AEs and readmissions within 90 days
 - Delirium 7 days post-operatively
 - Neurocognition at 90 days
Trial Design & Analysis

- ITT comparison of proportion of pts with evidence of CNS injury, with imputation for missing data
- Assumed control rate of 50% incidence of post-operative CNS infarcts
- 90% power to show reduction of 17.5% (absolute)
- 495 patients, 165 per group
Actual Sample Size

- At interim analysis, randomization was halted due to low conditional power for achieving primary endpoint.
- 383 patients randomized (77% of intended enrollment) when halted.
Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>CardioGard (N=118)</th>
<th>Control (N=120)</th>
<th>Embol-X (N=133)</th>
<th>Control (N=132)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>74.6 ± 6.8</td>
<td>73.4 ± 6.7</td>
<td>73.6 ± 6.6</td>
<td>73.6 ± 6.7</td>
</tr>
<tr>
<td>Male</td>
<td>69 (58.5)</td>
<td>77 (64.2)</td>
<td>81 (60.9)</td>
<td>86 (65.2)</td>
</tr>
<tr>
<td>Medical History</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>14 (11.9)</td>
<td>16 (13.3)</td>
<td>13 (9.8)</td>
<td>16 (12.1)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>48 (40.7)</td>
<td>36 (30.0)</td>
<td>36 (27.1)</td>
<td>37 (28.0)</td>
</tr>
<tr>
<td>MI</td>
<td>16 (13.6)</td>
<td>8 (6.7)</td>
<td>15 (11.3)</td>
<td>10 (7.6)</td>
</tr>
<tr>
<td>Stroke or TIA</td>
<td>16 (13.6)</td>
<td>8 (6.7)</td>
<td>11 (8.3)</td>
<td>8 (6.1)</td>
</tr>
<tr>
<td>Cognitive Impairment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At least one deficit</td>
<td>37/102 (36.3)</td>
<td>28/109 (25.7)</td>
<td>36/121 (29.8)</td>
<td>31/120 (25.8)</td>
</tr>
</tbody>
</table>

Continuous variables are expressed as mean ± SD and categorical variables as count (%).
Surgical Characteristics

<table>
<thead>
<tr>
<th></th>
<th>CardioGard (N=118)</th>
<th>Control (N=120)</th>
<th>Embol-X (N=133)</th>
<th>Control (N=132)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical Procedure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolated AVR</td>
<td>67 (56.8)</td>
<td>73 (60.8)</td>
<td>80 (60.2)</td>
<td>80 (60.6)</td>
</tr>
<tr>
<td>AVR & CABG</td>
<td>51 (43.2)</td>
<td>47 (39.2)</td>
<td>53 (39.8)</td>
<td>52 (39.4)</td>
</tr>
<tr>
<td>Concomitant procedures</td>
<td>18 (15.3)</td>
<td>19 (15.8)</td>
<td>26 (19.5)</td>
<td>20 (15.2)</td>
</tr>
<tr>
<td>Duration of CPB– min</td>
<td>104.9± 39.6</td>
<td>102.2 ± 40.2</td>
<td>109.1 ± 42.4</td>
<td>101.7 ± 39.8</td>
</tr>
</tbody>
</table>

Continuous variables are expressed as mean ± SD and categorical variables as count (%).
Debris Captured

- Debris captured in 75.8% of CardioGard subjects and 99.1% of Embol-X
- CardioGard filter
- Embol-X filter

6 mm
Percent of Embol-X Patients with at Least One Particle of a Given Size

- ≥ 0.15 mm: 99%
- ≥ 0.5 mm: 88%
- ≥ 1 mm: 61%
- ≥ 2 mm: 16%

Percent of Cardiogard Patients with at Least One Particle of a Given Size

- ≥ 0.15 mm: 68%
- ≥ 0.5 mm: 43%
- ≥ 1 mm: 14%
- ≥ 2 mm: 2%

Valve Tissue
Arterial Wall
Myocardium
Calcium Plaque
Thrombus

Automated measurement
Primary Endpoint*

Freedom From Clinical or Radiographic CNS infarction

OR of CNS Infarct:
1.06 (95% CI: 0.60,1.87)
P = 0.84

OR of CNS Infarct:
1.40 (95% CI: 0.81,2.40)
P = 0.22

*OR and P-value based on analysis of imputed data; bar chart based on observed data
FLAIR Scan (Linearly aligned to T1)
DWI Scan (Linearly aligned to T1)
Segmented DWI Lesion
ROI (region of interest) Segmentation
MRI Lesion Volume: Deciles of Observed Infarct Volume Distribution

CardioGard:
- Mean (sd): 178.5 (386.4)
- Median (IQR): 42 (0, 151)

Control:
- Mean (sd): 476.4 (2229.9)
- Median (IQR): 31 (0, 155)

p=0.28

Embol-X:
- Mean (sd): 321.3 (778.3)
- Median (IQR): 74 (0, 322)

Control:
- Mean (sd): 484.4 (2169.5)
- Median (IQR): 35 (0, 168)

p=0.49

CardioGard:
- Mean (sd): 178.5 (386.4)
- Median (IQR): 42 (0, 151)

Control:
- Mean (sd): 476.4 (2229.9)
- Median (IQR): 31 (0, 155)

P=0.18

Embol-X:
- Mean (sd): 321.3 (778.3)
- Median (IQR): 74 (0, 322)

Control:
- Mean (sd): 484.4 (2169.5)
- Median (IQR): 35 (0, 168)

p=0.49

P=0.59
Clinical Stroke

- Severe (>20)
- Moderate (5-15)
- Mild (0-4)

<table>
<thead>
<tr>
<th></th>
<th>≤7 Days</th>
<th>≤3 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>CardioGard</td>
<td>5.1%</td>
<td>6%</td>
</tr>
<tr>
<td>Control</td>
<td>5.8%</td>
<td>5.3%</td>
</tr>
<tr>
<td>Embol-X</td>
<td>8.3%</td>
<td>3.4%</td>
</tr>
<tr>
<td>Control</td>
<td>6.1%</td>
<td>5%</td>
</tr>
</tbody>
</table>

P-values:
- P=0.61
- P=0.49
- P=0.77
- P=0.99
Delirium at 7 Days

CardioGard vs. Control

P = 0.03

Embol-X vs Control

P = 0.07

% of Patients

Active
Control

CardioGard vs. Control
Embol-X vs Control
Composite Clinical Endpoint at 30 Days

Clinical ischemic stroke
Acute kidney injury
Death

CardioGard vs. Control
Emboli-X vs Control

% of Patients

P=0.61
P=0.08

Active
Control

CardioGard vs. Control
Emboli-X vs Control

CTS
CARDIOVASCULAR SURGICAL TRIALS NETWORK
AEs at 90 Days

Rate per 100-pt mths

- Bleeding
- Neurological Dysfunction
- AKI
- Cardiac Arrhythmias
- All Serious AEs

CardioGard vs Control

- P = 0.55
- P = 0.12
- P = 0.74
- P = 0.35

Embol-X vs Control

- P = 0.75
- P = 0.24
- P = 0.02
- P = 0.08

P < 0.01

All Serious AEs
Neurocognitive Decline at 90 Days

% of Patients w/ Decline

<table>
<thead>
<tr>
<th>Function</th>
<th>CardioGard</th>
<th>Control</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal Memory</td>
<td>Red</td>
<td>Blue</td>
<td>0.14</td>
</tr>
<tr>
<td>Executive Function</td>
<td>Red</td>
<td>Blue</td>
<td>0.65</td>
</tr>
<tr>
<td>Overall Cognition</td>
<td>Red</td>
<td>Blue</td>
<td>0.82</td>
</tr>
</tbody>
</table>

% of Patients w/ Decline

<table>
<thead>
<tr>
<th>Function</th>
<th>Embol-X</th>
<th>Control</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal Memory</td>
<td>Red</td>
<td>Blue</td>
<td>0.40</td>
</tr>
<tr>
<td>Executive Function</td>
<td>Red</td>
<td>Blue</td>
<td>0.05</td>
</tr>
<tr>
<td>Overall Cognition</td>
<td>Red</td>
<td>Blue</td>
<td>0.54</td>
</tr>
</tbody>
</table>

P-values indicate statistical significance.
Limitations

- This trial was first experience with these devices in study sites
- MRI infarcts were diagnosed with both 1.5T and 3T scanners possibly creating heterogeneity
- Trial was underpowered for clinical stroke and other endpoints especially since stopped early
- One third of strokes occurred after day 3 and would not be expected to be impacted by protection devices
- 90 day follow up does not adequately assess long term neurocognitive outcomes
Summary

- In patients undergoing SAVR, the use of 2 different embolic protection devices...
 - Was NOT associated with an improvement in
 - Freedom from clinical or radiographic infarction
 - Clinical stroke
 - Overall volume of CNS infarcts by MRI
 - Neurocognitive outcomes at 90 days
 - Was associated with
 - Capture of embolic debris in most patients
 - A reduction in delirium
 - An observed difference in infarct size distribution with fewer large volume infarcts
 - An increase in AE’s in the Embol-X patients
Conclusions

• We were unable to demonstrate an increase in freedom from CNS infarction with 2 different devices compared with control
• Baseline cognitive impairment exists in 1/4 -1/3 of ”neurologically normal” patients undergoing SAVR
• A majority of patients undergoing SAVR have evidence of radiographic infarct by MRI.
• The association between clinical and radiographic findings in this study and long-term neurocognitive outcomes is the subject of ongoing investigation
Implications

- This is the first large multicenter trial to collect information on brain injury after SAVR
- The relationship between brain injury and long term neurocognitive outcomes will be further explored